Science Policy For All

Because science policy affects everyone.

Eradicating global infectious disease: Two steps forward and one step back?

leave a comment »

By: Jessica Hostetler, PhD

Source: CDC

The world made some good progress recently toward controlling or eliminating several diseases. Such gains are often long and hard fought. Vaccines are often a primary tool for eliminating diseases, which makes the rise in vaccine scepticism in many developed nations all the more troubling and fears of disease resurgences and outbreaks all too real.

The good news for disease control started in July with the commendation from the World Health Organization (WHO) to India for its work in eliminating yaws earlier in May of 2016. Yaws, often described as a “forgotten disease,” is a chronic skin disease caused by the bacterium Treponema pallidum, which is closely related to the organism that causes syphilis. It affects primarily children in poverty-stricken, crowded communities in about 13 countries with limited access to clean water, sanitation, and healthcare and can lead to severe disfigurement if not treated. Yaws is treated by a single dose of oral (Azithromycin) or injected (Benzathine penicillin) antibiotic. India tackled yaws through a campaign spanning years. “Highly targeted awareness and early treatment campaigns in vulnerable communities enabled treatment of yaws cases and interruption of disease transmission,” said Dr. Khetrapal Singh, the WHO Regional Director for South-East Asia in a WHO July press release. The success in India as the first country to eliminate yaws under the 2012 WHO neglected tropical diseases (NTD) roadmap gives renewed momentum toward global eradication in the remaining yaws-endemic countries by 2020.

More good news followed on September 5th with the announcement from WHO that Sri Lanka is now free of malaria. It is a large turnaround from the historical burden of the disease which was as high as 5 million cases per year in the 1930’s followed by a highly successful elimination program resulting in only 17 recorded cases in 1963. However, due to multiple factors, potentially including “human migrations, asymptomatic parasite-carriers, vector-reintroduction, behavioural changes in the vector and the emergence of drug and insecticide resistance,” cases soared again to half a million or more cases per year in the 1970s and 1980s. With a renewed focus on global malaria elimination in the 2000s, Sri Lanka has become a remarkable success story. As laid out in the WHO September press release, Sri Lanka’s strategy for elimination included targeting the parasites and the mosquitoes transmitting them through “mobile malaria clinics in high transmission areas” to give “prompt and effective treatment,” which reduced disease transmission and the parasite reservoir. Work such as this requires large teams of people for “effective surveillance, community engagement and health education.” But given Sri Lanka’s proximity to India, where malaria is still endemic, active surveillance for newly introduced cases will be essential to keep the disease at bay.

On September 27th, 2016, the Pan American Health Organization (PAHO) certified that the region of the Americas is free from endemic measles. This news isn’t strictly “new” as the last locally transmitted case of measles in the Americas occurred in Venezuela in 2002. Certification as being disease-free is a long process, however, and the Americas continued to experience over 5000 imported measles cases between 2003 and 2014, necessitating careful documentation to ensure local transmission had ended. Measles is a highly contagious virus and causes fever and a characteristic rash. It can lead to severe symptoms including “pneumonia, brain swelling and even death.” This is a historical success, but the WHO reports that measles still caused over 100,000 deaths globally, mostly children, in 2014. Continued vigilance and worldwide vaccination compliance are needed to maintain gains and reduce the disease where it still spreads endemically.

Such good news represents decades of hard work from international organizations, national governments and NGOs and many field workers on the ground. These efforts represent the best of humanity in working to alleviate suffering and eradicate disease. One of the primary tools in the fight against infectious diseases remains the development and mass administration of vaccines. In the US, vaccination skepticism has been growing for years on the heels of a now-retracted study in The Lancet in 1998 that proposed a link between the Measles-Mumps-Rubella (MMR) vaccine and the development of autism. While there is no evidence that vaccinations or vaccine ingredients cause autism in any way, the paper caused lasting damage to the public perception of vaccinations. A recent study examining American Academy of Pediatrics Periodic Surveys from 2006 and 2013 reports that while most parents no longer cite autism as a reason for avoiding vaccines for their children, many are now avoiding vaccinations because they are “unnecessary.” An increasing number of pediatricians (up from 6% in 2006 to 11% in 2013) report always dismissing patients for “continued vaccine refusal” citing both a lack of trust in the physician-patient relationship and concern for other patients as primary reasons. Non-compliance with vaccinations is largely viewed as the driver behind an outbreak of measles in and around the Disneyland resort in California in 2014-2015 as 67% of those with infections (who were vaccine eligible) “were intentionally unvaccinated because of personal beliefs.” Vaccination rates in some California communities had fallen below the level required for protection of the population; this spurred a controversial tightening of regulations requiring vaccinations for all public-school educated children with no exemption for religious or personal beliefs.

The international news is even more concerning with a recent global survey (with a commentary in Science) looking at attitudes toward vaccination showing that 41% of respondents from France and 31% of respondents from Japan disagreed with the statement that vaccines are safe. Russia had the highest scepticism about the importance of vaccines at 17%. The survey notes that “Countries with high levels of schooling and good access to health services are associated with lower rates of positive sentiment, pointing to an emerging inverse relationship between vaccine sentiments and socio-economic status.” The WHO reports that vaccines prevent 2-3 million deaths per year from diphtheria, tetanus, pertussis (whooping cough), and measles, but that as many as 1.5 million children under the age of 5 died from vaccine-preventable diseases in 2008. Vaccine-scepticism and outbreaks from vaccine non-compliance represent an alarming and avoidable threat as we aim to eliminate vaccine-preventable diseases from the world. As a perspective by Dr. Douglas S. Diekema in the New England Journal of Medicine notes, we must set a high goal in the US and globally to improve childhood vaccination rates through increased and free access to vaccines, but also swift rebuttals of unbalanced or incorrect reporting on vaccinations. The physician-patient relationship may offer the best opportunity to educate and “influence the vaccine-hesitant.”

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

October 21, 2016 at 9:34 am

Posted in Essays

Tagged with , , , , ,

Science Policy Around the Web – October 21, 2016

leave a comment »

By: Leopold Kong, PhD

Source: Flickr, under Creative Commons

2016 Elections

The polling crisis: How to tell what people really think

The conflicting polling results for the US presidential elections have been a source of no small confusion for American voters. Skepticism over polling is further justified by recent failures, as in the 2013 provincial elections in British Columbia when the Liberal Party won against expectations, or the Brexit referendum. Two major challenges make polling less accurate, and changes are underway to address these issues.

The first major challenge is obtaining public opinion. In the past, pollsters can simply call people at home, but this is increasingly difficult with the rise of cell phone use. Currently, only 50% of US households have landlines compared to 80% in 2008. Federal regulations require mobile phones be called manually, and people often don’t answer cell phones from an unfamiliar number. People who do answer these numbers might represent a biased population. Despite these limitations, calling cell phones are more accurate than online polls, which are less regulated and could easily be manipulated. Using texting instead of direct calls could also increase response rates.

The second major challenge is predicting who will vote, which is particularly difficult in the US with low voter turnouts of about 45-50%. To predict this, each pollster organization uses a proprietary mix of factors such as voting history and political engagement. “Likely voter modeling is notoriously the secret-sauce aspect of polling,” says Courtney Kennedy, Director of survey research at the Pew Research Center in DC. Furthermore, these models may generate unconscious bias for pollsters to “herd” polling to better reflect predicted expectations. Improvements are underway, including using a probability model versus a discrete yes/no model, and greater transparency in methodology.

With the changing face of demographics and technologies, polling science is evolving to keep pace. (Ramin Skibba, Nature)

Health Policy

Two HPV shots instead of three

Human papilloma virus (HPV) is responsible for about 5% of all cancers in the world, including 70% of throat, neck and oral cancers, and 90% of all anal cancers. Originally, an effective vaccine was approved in 2006 for a three-dose regimen to confer protection. Since then, clinical data reviewed has shown protective efficacy with only two doses in Costa Rica. The Advisory Committee on Immunizations Practices at the Centers for Disease Control and Prevention (CDC) has now recommended two doses of the vaccines for pre-teen boys and girls.

“The pediatricians and other people I talked to said the new recommendation is a game changer with that schedule,” said Kevin Ault, MD, professor of OBGYN at the University of Kansas Hospital. “It’ll make it easier for the doctors, easier for the parents and easier for the kids.”

This recommendation is very timely, and may boost vaccination rates, which have risen very slowly so far. Teen girls getting the vaccine only increased from 60% in 2014 to 62.8% in 2015. Doctors have been timid about promoting the shots with parents, who may not want to have discussions about their children having sex. A lighter vaccination schedule may help. Furthermore, it reduces cost significantly for implementing the vaccine in low and middle-income countries, and thus may greatly aid in curbing the global cancer burden. (Associated Press, STAT)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

October 21, 2016 at 9:00 am

Posted in Linkposts

Tagged with , , ,

Science Policy Around the Web – October 18, 2016

leave a comment »

By: Agila Somasundaram, PhD

Source: WHO

Global Health

Why is the news about TB so bad?

The Global Tuberculosis Report released recently by the World Health Organization (WHO) reveals that the Tuberculosis (TB) epidemic is larger than previously estimated. TB has generally been considered a disease of the past, but the new report estimates that around 10.4 million people were infected in 2015, 480,000 of the new cases being multidrug-resistant TB (MDR-TB). TB claimed on average more than 34,000 lives a week, exceeding the death toll by Ebola. 60 % of the new cases were seen in India, Indonesia, China, Nigeria, Pakistan and South Africa.

TB is especially difficult to combat in the developing world, for many reasons. Firstly, it is difficult to accurately estimate the number of TB cases. For example, WHO estimates that about half of the TB cases in India are not reported to health authorities. In parts of Central Africa, the lack of resources to carry out large-scale surveys results in insufficient data on the epidemic. Secondly, crowded living conditions and poor nutrition make people more susceptible to the disease. TB is also financially draining on the families of those infected, resulting in poor treatment. Thirdly, new drugs (Bedaquiline, Delamanid) that have been developed to treat MDR-TB are being used very cautiously to avoid the development of drug-resistance and side effects. And last, current efforts to cure TB are focused on symptomatic cases, and not pre-symptomatic or early stage cases.

The WHO report states, “Global actions and investments fall far short of those needed to end the global TB epidemic.” Dr. Margaret Chan, Director General of WHO said, “We face an uphill battle to reach the global targets for tuberculosis. There must be a massive scale-up of efforts, or countries will continue to run behind this deadly epidemic…” (Rina Shaikh-Lesko, NPR)

Science Diplomacy

U.S. and Cuban biomedical researchers are free to collaborate

The United States reconciled with Cuba in 2014, and has been removing several sanctions since then. Along with ease of trade and travel between the two countries, scientists from the two nations can now collaborate more easily with each other. Earlier, scientists in the US had to go through a “a very involved and detailed process” with the Office of Foreign Assets Control (OFAC) to get a license to conduct research with Cuban scientists, and these licenses typically lasted only a year or two. Also, what kinds of collaborations were permissible was unclear under the old rules.

Both the US and Cuban scientists welcome the new move. Dr. Pedro Valdés-Sosa, research director at the Cuban Neuroscience Center in Havana said on his visit to the US, “…Everywhere I went there were concrete ideas for collaborations that would benefit the people of both countries. These new measures pave the way for cooperation.” Also, Cuban scientists can now receive research funding from the US government, the Food and Drug Administration (FDA) can review drugs developed in Cuba, and FDA-approved drugs can be imported from Cuba and sold in the US. Dr. Thomas Schwaab of Roswell Park Cancer Institute in Buffalo, New York wonders whether Cuban scientists who have ongoing collaborations with scientists in other parts of the world would welcome working with the US, given that they were shunned for so long. But the Cuban scientists “are very proud of what they’ve achieved,” says Dr. Schwaab. (Richard Stone, Science)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

October 18, 2016 at 9:00 am

Science Policy Around the Web – October 14, 2016

leave a comment »

By: Fabricio Kury, MD

Source: pixabay

2016 Elections

What 10 health care experts would ask Trump and Clinton about health care

Health care finally had presence in the U.S. presidential race during the second debate this last Sunday. While Politico fact-checked what was said at the debate, the team at Advisory Board listed questions that should be of concern to the presidential candidates. Below is an overview of the topics and contexts of some of these questions.

Amitabh Chandra brought the important issue of Medicaid expansion. The Patient Protection and Affordable Care Act (PPACA, or ACA, a.k.a. “Obamacare”), signed into law in 2010, included provisions to expand Medicaid eligibility to all people with income up to 133% of the federal poverty line. However, unlike Medicare which is federally funded, Medicaid is jointly funded by each state and the union. The Supreme Court has ruled that the federal government cannot coerce states into expanding Medicaid, and, as of early 2016, 18 states had opted not to expand.

Douglas Holtz-Eakin and Martin Gaynor bring the perennial topic of free market-based versus government-based health care. Proponents of market-based approaches, such as Donald Trump, argue that competition can lower costs and thereby increase access, including for people currently uninsured. Government-based health care, also known as single-payer health care, is the case where the government provides or subsidizes care for everyone. This option, to a degree, is supported by Hillary Clinton. The Affordable Care Act, defended by Democrats and despised by Republicans, sought to establish a “middle-ground” approach. It promotes a U.S. health care system based on private insurance, but competition among the insurers would be stronger thanks to health insurance exchanges, where consumers are empowered to make better decisions. Under the ACA, everyone is obligated to have insurance, and vulnerable population groups, such as those living close to the poverty line, receive subsidies to lower the costs of their premiums. Moreover, the ACA, as well as other pieces of legislation, promotes alternative payment models, which seek to reimburse care for its value rather than number of procedures, encounters, services, i.e., its volume. In 2015Centers for Medicare and Medicaid Services (CMS) announced plans to tie 90% of Medicare payments to value as early as 2018.

Farzad Mostashari makes a rather stingy question for Clinton because of her support for the ACA. One of the predicted impacts of this law is generalized consolidation in the health care industry. However, consolidation can hamper competition, and moreover there is evidence that smaller practices are those ripe for the best improvements in quality and cost. How will small physician practices compete with large conglomerates, the largest of which are akin to Kaiser Permanente or the Geisinger Health System? Nicholas Bagley and Margaret O’Kane reinforce this concern by inquiring directly about how to address such excessive consolidation.

Finally, Robert Wachter, author of the praised book The Digital Doctor, asks about how to rein the resilient costs of health care, which today occupy almost 1 dollar out of every 5 in the entire U.S. economy. Clinton’s answer could be something close to the ACA’s Accountable Care Organizations approach, in which a group of providers receive bonus payments if they spend less than expected. Trump, as he mentioned in the last presidential debate when answering a question from the audience, believes in the power of market competition to lower health care costs.

Overall, this presidential election is also a contrasting choice between proceeding with the Democrat-supported Affordable Care Act and realizing the Republican pledge of dismantling this law to come up with something else. Bob Kocher and Ezekiel Emanuel, who worked in the White House in drafting the ACA, have laid their defense for “Obamacare” in this article. (Daily briefing, Advisory Board)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

October 14, 2016 at 10:14 am

Posted in Linkposts

Tagged with , ,

Science Policy Around the Web – October 7, 2016

leave a comment »

By: Eric Cheng, PhD

Source: pixabay

Antibiotic Resistance

World health leaders agree on action to combat antimicrobial resistance, warning of nearly 10 million deaths annually if left unchecked

World leaders committed to take action on antimicrobial resistance during their September 21, 2016 high-level meeting on Antimicrobial Resistance in New York. This is the first time Heads of State made a commitment to address the root cause of antimicrobial resistance in human health, animal health, and agriculture. Dr. Margaret Chan, Director-General of the World Health Organization emphasized that “antimicrobial resistance poses a fundamental threat to human health, development, and security. The commitments made today must now be translated into swift, effective, lifesaving actions across the human, animal and environmental health sectors. We are running out of time.”

The committed countries pledged to strengthen regulation of antimicrobials, improve knowledge and awareness, and promote best practices. World leaders also agreed to foster innovative approaches using alternatives to antimicrobials and new technologies for diagnosis and vaccines. The committed countries will base their national action plans on the Global Action Plan on Microbial Resistance, a blueprint developed in 2015 by the World Health Organization along with Food and Agriculture Organization of the United Nations and the World Organization for Animal Health. (United Nations Meetings Coverage and Press Releases)


Documents reveal intense battle over CDC Zika tests

In addition to battling the spread of Zika infections, the Center for Disease and Prevention (CDC) is currently in an internal battle with determining which test will be best in diagnosing someone with the disease. Robert Lanciotti is the Chief of the Diagnostics and Reference Activity in the Division of Vector-Borne Infectious Diseases in Fort Collins, CO. At the center of the debate is the agency’s prioritization of the Trioplex real-time PCR-based assay that tests for Zika, dengue, and chikungunya over the Singleplex assay which only detects Zika, which Lanciotti’s research found to be 39% more effective than the Trioplex assay.

Lanciotti claimed that the CDC “created a substantial and specific danger to public health” when it did not disclose lower sensitivity of the test it used. Lanciotti was subsequently reassigned to a non-supervisory position in his laboratory who then filed a whistleblower retaliation claim with the US Office of Special Counsel. Lanciotti alleged that the demotion was because of his concerns with the Zika test. Lanciotti has since been reinstated as director of his lab. In addition, the Office of Special Counsel requested that the CDC investigate Lanciotti’s concerns with the sensitivity of the Trioplex test.

The CDC’s own investigation found that Dr. Lanciotti’s allegations “are not substantiated by the available evidence.” The CDC ruled that “[t]here is insufficient, statistically robust, definitive data to reach an evidence-based conclusion that use of the Trioplex assay over the Singleplex in clinical practice will result in 39 percent of Zika virus infections being missed.” The CDC also noted that it is continuing to improve on the Trioplex assay such as enabling testing laboratories to use larger sample volumes in order to increase the assay’s limit of detection. The Trioplex assay is still approved for use as a method of detecting Zika virus, dengue, and chikungunya. (Jon Cohen, Science Magazine)

Research Funding

HHMI Launches New Program for Early-Career Scientists

The Howard Hughes Medical Institute (HHMI) recently launched a new program to recruit and retain early-career scientists that are underrepresented in the life sciences. These individuals include those coming from a disadvantaged background. The selected HHMI scientists will become Hanna H. Gray fellows, named after Hanna H. Gray, former chair of the HHMI Trustees and former president of the University of Chicago.

The purpose of the Gray Fellows Program is to find and encourage talented students and early scientists that are committed to continuing their scientific training in the nation’s top laboratories. The Hanna H. Gray Fellows grant competition is open to all eligible applicants and no nomination is required.  Selected fellows are required to devote at least 75 percent of their total effort to research during both the postdoctoral training and faculty phases of the award. In addition, part of the goal for the program is to position Gray fellows to be competitive for NIH grants and other awards when they transition to the faculty phase of their careers. (Howard Hughes Medical Institute)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

October 7, 2016 at 11:12 am

Now Entering the Final Frontier of Antibiotics

leave a comment »

By: Amy Kullas, PhD

Source: CDC

On September 21, 2016, the United Nations (UN) convened a special session to discuss options to stop (or at least slow) the emergence of new resistant microbial strains to the precious antibiotics that are still left. This meeting was only the fourth time in UN history that it has convened prominent global leaders to discuss a health related topic (HIV, non-communicable diseases, and Ebola were the others). During this assembly, the group agreed to tighten regulation of antimicrobials, and encourage development of new antibiotics and treatments.

The development of new antibiotics has not been keeping up with the demand. In the United States, pharmaceutical companies have lost interest in developing new treatments. In fact, the most recent ‘new’ class of antibiotics was developed more than 30 years ago, in 1984. Pharma argues that it costs too much money (estimated at $1 billion and takes an average of a decade) to develop a product that will ultimately fail. Without changes in current policies to combat antimicrobial resistance, an estimated $100 trillion could easily be spent by 2050. Hopefully, this attitude may begin to change as the US government’s Biomedical Advanced Research and Development Authority (BARDA) announced to invest up to $170 million to support antibiotic development.

Antibiotics were once hailed as “wonder drugs” since they were virtually effective against every pathogen encountered. Nowadays, what used to be common infections and easily treated with routine antibiotics are now resistant. Moreover, this is a worldwide problem. Using metagenomic analysis, scientists have isolated DNA from soil samples from around the globe and identified the presence of antibiotic resistance genes on all seven continents.

Why has there been this increase in antibiotic resistance? The answer is multifaceted. First, many times when people go to the doctor’s office, they expect to be given a prescription for some drugs to ‘help them feel better.’ Physicians may not wait for cultures to be taken and have the results in hand before prescribing a medication. Thus there is the strong possibility that what is ailing them is a viral infection, such as the common cold, rather than a bacterial infection and antibiotics are ineffective against viruses. It is estimated than almost a third of antibiotics prescribed in the United States are not needed and not effective. Further, the prescription may be for a broad-spectrum antibiotic used to kill many pathogens, as compared to a narrow-spectrum antibiotic that would have a higher specificity for a specific type of bacteria. Use of narrow-spectrum antibiotics is less likely to cause resistance. Also, once the patient begins to ‘feel’ better, he or she may not finish the entire regimen of the prescribed medicine. This likely will leave behind bacteria that have been exposed to the specific antibiotic only to be stronger the next time the microbe encounters it. Other times, people may not even seek medical attention and purchase antibiotics over the counter or online. This practice is becoming common in India and as a result the country houses “some of the most resistant bacteria in the world.”

Additionally, antibiotics and antimicrobials are routinely used in agriculture and are given to livestock (cattle, pigs, poultry, etc.) in their feed or drinking water, and sprayed on crops. Shocking estimates are that over 50% (other estimates are as high as 70%) of the antibiotics in the United States are used in food production. This equates to a whopping 25 million pounds of antibiotic products used on livestock each year! They are given for a variety of reasons: to use less food to gain weight while helping the animal gain weight faster, and of course the treatment, control, or prevention of diseases. Many scientists feel that this heavy use of antibiotics in agriculture is contributing to the rapid increase in antibiotic-resistant bacteria. In China, one study found antibiotic resistance genes present in the manure at pig farms that routinely used antibiotics was increased 28,000 times when compared to farms that do not use antibiotics. More than 60 different antibiotics have been isolated from randomly taken samples from both the Yangtze and Pearl Rivers. Thus, the correlation between antimicrobial use in food production and the significant increase in bacterial resistance has prompted a reexamination of agricultural practices in numerous countries, including the U.S.

The CDC stated “up to half of antibiotic use in humans and much of the antibiotic use in animals is unnecessary and inappropriate and makes everyone less safe.” On the CDC’s urgent list of resistant bacteria are: Clostridium difficile (C. difficile), Carbapenem-resistant Enterobacteriaceae (CRE) and drug-resistant Neisseria gonorrhoeae (cephalosporin resistance). The last-line antibiotics are beginning to fail against these pathogens. Recently, there has been a cluster of gonorrhea cases reported in Hawaii in which the bacteria demonstrated high resistance to azithromycin and reduced susceptibility to ceftriaxone. Physicians are prescribing these two drugs in combination in an attempt to slow the emerging resistance of this relentless microbe. Scientists remain concerned that gonorrhea may soon be resistant to all antibiotics. Even one of the most prominent hospitals in the nation, the National Institutes of Health’s Clinical Center, suffered an outbreak in 2011 of Carbapenem-resistant strain of Klebsiella pneumonia that quickly spread beyond the intensive care unit, ultimately killing six of the patients.

These resistant pathogens have been coined the nickname “superbugs”. However, these superbugs are not nearly as cute as one may envision – little single-celled organisms wearing capes to fight crime. They should be the ones considered criminal, costing billions of dollars annually and killing almost a million people. Advocates and public health experts have been warning of the superbug emergence for decades, but these warnings mostly fell on deaf ears. Last year, the Obama administration revealed a national plan to tackle superbugs and established a presidential council to reduce antibiotic-resistant bacteria. Now for the first time, world leaders finally met to discuss this emerging problem. Hopefully, it is not too late and this global threat will not continue to grow logarithmically out of control.

Interested in learning more about this topic? Check out the TED talk by Maryn McKenna titled: “What do we do when antibiotics don’t work anymore?”

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

October 7, 2016 at 11:09 am

Posted in Essays

Tagged with , , ,

Science Policy Around the Web – October 4, 2016

leave a comment »

By: Cheryl Smith, PhD

Source: Flickr, under Creative Commons

Health Policy

FDA approves first drug for Duchenne muscular dystrophy

The Food and Drug Administration (FDA) approved a drug, Exondys 51, to treat Duchenne muscular dystrophy, a rare, debilitative disease that destroys muscle and confines boys to wheelchairs and eventually death. The decision was made by the FDA in opposition to its own medical staffers who questioned the effectiveness of the drug. One of the key issues medical staffers were concerned about was whether the drug can produce a sufficient amount of a protein called dystrophin to reverse muscle damage and, as a consequence, overall mobility and strength.

However, patients and their families lobbied hard for drug approval. Laura McLinn, an Indiana mother whose 7-year-old son has Duchenne muscular dystrophy, was in tears Monday when she heard the news of the drug’s approval. “I’m really overwhelmed,” McLinn said. “We’ve been waiting a long time to hear this.”

In reaching its decision, the agency essentially overruled its own medical staffers, who earlier this year questioned the effectiveness of the drug over concerns about a small clinical trial. The wrangling raised still larger questions about standards for approving a drug, but some FDA officials also acknowledged that unmet medical needs for patients with some rare diseases warranted endorsement under a program known as accelerated approval. (Ed Silverman, Scientific American)

Biotechnology and Forensics

DNA breakthrough finally gives ‘a face to this crime.’ But can it solve a woman’s 1992 murder?

Lisa Ziegert was murdered in 1992 and her killer was not found, however, a sliver of her attacker’s DNA was recovered. But that DNA lead went cold – like all the other evidence in the case. Now, prosecutors say that the DNA left by Ms. Ziegert’s attacker has given them a new lead in the case as well as a face. The Reston-based company Parabon Nanolabs has developed a new technology that uses DNA to make predictions about the suspect’s ancestry, eye color, hair color, skin color, freckling, and face shape. The DNA technology uses these characteristics to reconstruct faces based on DNA characteristics.

In the past, DNA has typically been used as a biometric identifier capable of identifying individuals with great certainty. Now, this technology can literally put a face to a crime.

Ms. Ziegert’s killer, according to Parabon, was likely a man of European descent with hazel eyes and brown or black hair. For the first time in twenty-four years, we have a face to this crime,” Hampden District Attorney Anthony Gulluni said in a statement released Wednesday. “The technology we have put to use is at the leading edge of the industry. No expense, effort, or means will be spared to bring the person(s) to justice who killed Lisa. We will never forget her.” (Cleve R. Wootson Jr., The Washington Post)

Biomedical Research

Yoshinori Ohsumi of Japan wins Nobel prize for study of ‘self-eating’ cells

Dr. Yoshinori Ohsumi, a Japanese cell biologist, was awarded the Nobel Prize in Physiology or Medicine on October 3, 2016 for his discovery of autophagy – a Greek term for “self-eating”. It is a crucial process for cellular survival. During starvation, cells are able to break down proteins and reuse them for energy internally running their recycling plant for survival. Autophagy is also critical during infections and can serve to protect the cell by destroying invading viruses or bacteria and then sending them for recycling. Cells can also use autophagy to get rid of damaged protein structures. In diseases such as cancer, neurodegenerative disorders, or immunological diseases, autophagy is thought to be defective. The importance of this cellular recycling mechanism was not known until Dr. Ohsumi studied the process in baker’s yeast in the 1990s.

Dr. Ohsumi received his Ph.D. from the University of Tokyo in 1974 in molecular biology. His ‘unimpressive’ Ph.D. thesis made it difficult for him to find a job. His advisor suggested a postdoctoral position at Rockefeller University in New York where he was to study in vitro fertilization in mice. Because Dr. Ohsumi grew ‘very frustrated’ he switched to studying the duplication of DNA in yeast. This work led him to a junior professorship at the University of Tokyo where he began his autophagy work. Dr. Ohsumi later moved to the National Institute for Basic Biology, in Okazaki, and since 2009, has been a professor at the Tokyo Institute of Technology.

“All I can say is, it’s such an honor,” Dr. Ohsumi told reporters at the Tokyo Institute of Technology after learning he had been awarded the Nobel, according to the Japanese broadcaster NHK. “I’d like to tell young people that not all can be successful in science, but it’s important to rise to the challenge.” (Gina Kolata and Sewell Chan, New York Times)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

October 4, 2016 at 9:02 am