Science Policy For All

Because science policy affects everyone.

Science Policy Around the Web – July 21, 2017

leave a comment »

By: Rachel F Smallwood, PhD

Source: pixabay


Engineered Cell Therapy for Cancer Gets Thumbs Up from FDA Advisers

A panel of advisers has recommended that the FDA approve chimeric antigen receptor T-cell (CAR-T) therapy for treatment of acute B-cell lymphoblastomic leukemia. The committee unanimously agreed that the risk to benefit ratio was favorable enough to proceed with approval of the drug (tisagenlecleucel), manufactured by Novartis. CAR-T therapy utilizes a patient’s own immune cells to find and attack cancer cells. In a recent trial in humans, 82.5% of patients went into remission following treatment with the drug; there have also been promising results from its use in glioblastoma treatment. The treatment would specifically be for pediatric and young adult patients who did not respond well to initial treatments or who relapsed from being in remission.

Despite have strong positive effects, there are potential risks posed by CAR-T therapy. In the study mentioned above, almost half of the patients experienced an inflammatory reaction called cytokine release syndrome. Although all of those cases were treatable, the condition can be life-threatening. Novartis also reported neurological problems. Other CAR-T trials have had several deaths due to brain swelling, but those were in adult populations and were some differences in the therapies.

The FDA often does take the recommendations of its advisers, but there is much to consider in this decision. It would essentially be approving a living drug that is individualized to each patient; the patients’ own blood cells are sent to a manufacturing center, where they are genetically engineered to target leukemia cells. The cell population is then allowed to proliferate, and the entire process takes around twenty-two days. This process presents a quality assurance and control problem to the FDA. However, the target population typically has a poor prognosis and very few options, so the panel considers the potential for increased survival and quality of life to be worth the risks. (Heidi Ledford, Nature News)

Stem-Cell Therapy

Unapproved Stem-Cell Treatments Touted on Federal Database Clinicaltrials.Gov is an online database, curated by the National Library of Medicine and the National Institutes of Health, that logs clinical studies occurring around the country and allows them to be searched by patients, family members, healthcare providers, and researchers. The information on the site is provided by the researchers or sponsors of the individual studies themselves. It allows patients and healthy people to become aware of opportunities to participate in medical research. These studies involve a wide range of treatments, including drugs, devices, behavioral therapies, and procedures.

A recent study found that the database is being abused by clinics advertising for stem cell trials. These trials target individuals looking for treatment for a variety of conditions, and all of them charge for participation. There are very few FDA-approved stem cell therapies, and most clinics that utilize stem cell therapies assert that they do not need FDA approval since they are practicing medicine and do not substantially alter the stem cells (although that is disputed).  Since the researchers themselves indicate in the database whether they need FDA approval, there is little oversight to ensure these studies are correctly representing the risks and benefits of their treatment.

Although a disclaimer was added this spring that informs visitors that the presence of a trial in the database does not indicate government endorsement of it, many people do not realize that they could potentially be participating in a for-profit procedure that does not have the proper oversight to ensure patient safety. In one such case, three women were blinded who paid to receive stem cell therapy for macular degeneration. Most legitimate research studies will not require payment for participation, although travel and lodging costs associated with participation may be incurred.

While many patients may receive treatment at one of these clinics without an adverse event or even with a positive result, critics of these types of clinics are calling for regulation of entries into the system. They assert that a federal resource for medical research should not be used to advertise for for-profit clinics that are utilizing therapies that have not been studied or reviewed for safety and efficacy. (Laurie McGinley, Washington Post)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

July 21, 2017 at 10:08 am

The Economic Impact of Biosimilars on Healthcare

leave a comment »

By: Devika Kapuria, MD

          Biologic drugs, also defined as large molecules, are an ever-increasing source of healthcare costs in the US. In contrast to small, chemically manufactured molecules, classic active substances that make up 90 percent of the drugs on the market today, biologics are therapeutic proteins that undergo production through biotechnological processes, some of which may require over 1000 steps. The average daily cost of a biologic in the US is $45 when compared with a chemical drug that costs only $2. Though expensive, their advent has significantly changed disease management and improved outcomes for patients with chronic diseases such as inflammatory bowel disease, rheumatoid arthritis and various forms of cancer. Between 2015-2016, biologics accounted for 20% of the global health market, and they are predicted to increase to almost 30% by 2020. Worldwide revenue from biologic drugs quadrupled from US $47 billion in 2002 to over US $200 billion in 2013.

The United States’ Food and Drug Administration (FDA) has defined a biosimilar as a biologic product that is highly similar to the reference product, notwithstanding minor differences in clinically-inactive components, and for which there are no clinically meaningful differences between the biologic product and the innovator product in terms of safety, purity and efficacy. For example, CT-P13 (Inflectra) is a biosimilar to infliximab (chimeric monoclonal antibody against TNF-α) that has recently obtained approval from the FDA for use of treatment of inflammatory bowel disease. CT-P13 has similar but slightly different pharmacokinetics and efficacy compared to infliximab. With many biologics going off patent, the biosimilar industry has expanded greatly. In the last two years alone, the FDA approved 4 biosimilar medications: Zarxio (filgrastim-sndz), Inflectra (infliximab-dyyb), Erelzi (etanercept-szzs) and Amjevita (adalimumab-atto).

Unlike generic versions of chemical drugs (small molecules that are significantly cheaper than their branded counterparts), the price difference between a biosimilar and the original biologic is not huge. This is due to several reasons. First, the development time and cost for biosimilars is much more than for generic medications. It takes 8-10 years and several hundred million dollars for the development of a biosimilar compared to around 5 years and $1-$5 million for the generic version of a small molecule drug. With only single entrants per category in the US, biosimilars are priced 15-20% lower than their brand name rivals, which, though cheaper, still amount to hundreds of thousands of dollars. By the end of 2016, the estimated global sales from biosimilars amounted to US $2.6 billion, and nearly $4 billion by 2019. Estimates for the cost savings of biosimilars for the US market are variable; the Congressional Budget Office estimated that the BPCI (Biologics Price Competition and Innovation) Act of 2009 would reduce expenditures on biologics by $25 billion by 2018. Another analysis from the Rand Corporation estimated that biosimilars would result in a $44.2 billion reduction in biologic spending between 2014 and 2024.

In the United States, a regulatory approval pathway for biosimilars was not established till the Patient Protection and Affordable Care Act of 2010. However, biosimilars have been used in Europe for over a decade, and this has led to the development of strategies for quicker adaptation, including changes in manufacturing, scaling up production and adapting to local healthcare policies. These changes have led to a competitive performance of biosimilars in the European market, with first generation biosimilars taking up between 50-80% of the market across 5 European countries, with an expected cost savings of $15 to$44 billion by 2020. One example that demonstrates a significant discount involves the marketing of Remsima, a biosimilar of Remicade (infliximab). In Norway, an aggressive approach towards marketing of Remsima was adopted with a 69% discount in comparison to the reference product. After two years, Remsima has garnered 92.9% of the market share in the country.

The shift to biosimilars may be challenging for both physicians and patients. While safety concerns related to biosimilars have been alleviated with post marketing studies from Europe, there still remains a significant lack of awareness about biosimilars amongst healthcare providers, especially about prescribing and administering them. Patient acceptance remains an important aspect as well, with several patients loyal to the reference brand who may not have the same level of confidence in the biosimilar. Also, like with generics, patients may believe that biosimilars are, in some way, inferior to the reference product. Increased reporting of post marketing studies and pharmacovigilance can play a role in alleviating some of these concerns.

In 2015, the FDA approved the first biosimilar in the US, after which, it has published a series of guidelines for biosimilar approval, under the BPCA act, including demonstrating biosimilarity and interchangeability with the reference product. This includes a total of 3 final guideline documents and 5 draft guidance documents. Starting in September 2017, the World Health Organization will accept applications for prequalification into their Essential Medication list for biosimilar versions of rituximab and trastuzumab, for the treatment of cancer. This program ensures that medications purchased by international agencies like the UNICEF meet standards for quality, safety and efficacy. Hopefully, this will increase competition in the biosimilar market to reduce price and increase access to medications in low-income countries.

Both human and economic factors need to be considered in this rapidly growing field. Increasing awareness among prescribers and patients about the safety and efficacy of biosimilars as well as improving regulatory aspects are essential for the widespread adaptation of biosimilars.

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

July 19, 2017 at 10:42 am

Science Policy Around the Web – July 7, 2017

leave a comment »

By: Leopold Kong, PhD

Food Policy

Food and Microbiota in the FDA Regulatory Framework

More and more probiotic food products, or microbiota-directed foods, claiming to “improve” the body’s microbiota have been hitting the shelves, with sales valuing over US$700 million in the US alone and US$36.6 billion globally this past year. However, there is little framework regulating their ingredients or guaranteeing the scientific accuracy of their health claims that has resulted in costly legal action. For example, in September 2009, Dannon settled a US$35 million consumer class action suit challenging the claimed health benefits in their ads. A similar class action suit against Procter & Gamble’s Align probiotic has been certified and set for Oct. 16, 2017. A paper recently published in the journal Science calls for greater clarity in policy regulating probiotic products. Importantly, the authors urge that probiotics should be clearly classified as a dietary supplement, a medical food, or a drug. If classified as a dietary supplement, probiotics can make claims on nutrient content and effect on health, but not on treatment, prevention or diagnosis of disease. If classified as a medical food, probiotics must contain ingredients that aid in the management of a disease or condition, with “distinctive nutritional requirements”, that is scientifically recognized. Finally, if classified as a drug, probiotics will require clinical trials to prove its medical claims. An alternative, and perhaps cheaper, way forward is to regulate probiotics as a kind of over-the counter medical food, requiring testing only for their active ingredients that can be used in a variety of products. (Green et al., Science)

Antibiotic Resistance

Untreatable Gonorrhoea on the Rise Worldwide

Over 78 million people are infected with gonorrhea each year, a sexually transmitted disease that has traditionally been treated effectively with anti-microbials. However, recently published data from 77 countries show that antibiotic-resistant gonorrhea is getting more pervasive and harder to cure. “The bacteria that cause gonorrhea are particularly smart. Every time we use a new class of antibiotics to treat the infection, the bacteria evolve to resist them,” said Dr. Teodora Wi, Medical Officer, Human Reproduction, at the WHO. The data found widespread resistance to ciprofaxacin, azithromycin, and even to the last-resort treatments, oral cefixime and injectable ceftriaxone. New drugs are under development, including a phase III trial of a new antibiotic, zoliflodacin, launched by the non-governmental organization Drugs for Neglected Diseases Initiative and Entasis Therapeutics, a biotech company in Waltham, Massachusetts. Better prevention through education on safer sexual behavior and more affordable diagnostics will also be needed moving forward. (Amy Maxmen, Nature News)

Maternal Health

U.S. has the Worst Rate of Maternal Deaths in the Developed World

A recent six-month long investigation by NPR and ProPublica has found that more women in the US are dying of pregnancy related complications than any other developed country. Surprisingly, this rate is increasing only in the US, which stood at ~ 26.4 deaths per 100,000 births in 2015, translating to nearly 65,000 deaths annually.  This is three times worse than for women in Canada, and six times worse than for women in Scandinavian countries. Reasons include older new mothers with more complex medical histories, unplanned pregnancies, which are the case half the time in the US, greater prevalence of C-sections, and the fragmented health system. This is in contrast with progress in preventing infant mortality, which has reached historic levels in the US. Better medical training for maternal emergency and more federal funding for research in this area may improve the situation for American mothers. (Nina Martin and Renee Montagne, NPR)

Have an interesting science policy link?  Share it in the comments!

Science Policy Around the Web – July 7, 2017

leave a comment »

By: Liu-Ya Tang, PhD

Source: pixabay


Is There Such a Thing as an Autism Gene?

Autism has become a global burden of disease. In 2015, it was estimated to affect 24.8 million people globally. Significant research efforts are underway to investigate the causes of autism. Autism is highly heritable – there is an 80 percent chance that a child would be autistic if an identical twin has autism. The corresponding rate is about 40 percent for fraternal twins.

However, is there such a thing as a single autism gene? Researchers haven’t found one specific gene that is consistently mutated in every person with autism. Conversely, 65 genes are strongly linked to autism and more than 200 others have weaker ties, many of which are related to important neuronal functions. Mutations in a variety of these genes can collectively lead to autism. The mutations could be from single DNA base pair, or copy number variations, which are deletions or duplications of long stretches of DNA that may involve many genes. Most mutations are inherited, but some mutations could also happen in an egg or sperm, or even after conception.

Besides genetic factors, maternal lifestyle and environmental factors can also contribute to autism. Exposure to air pollution during pregnancy or a maternal immune response in the womb may increase the risk of autism. While there is speculation on the link between vaccines and autism, it is not backed by scientific evidence.

Since both genetic and non-genetic factors play a role in the development of autism, establishing the underlying mechanism is complicated. There is no single specific test that can be used for screening autism. However, some tests are available to detect large chromosomal abnormalities or fragile X syndrome, which is associated with autism. (Nicholette Zeliadt, Washington Post)

STEM Education

New Florida Law Lets any Resident Challenge What’s Taught in Science Classes

A new law was signed by Florida Gov. Rick Scott (R) last week, and has taken effect starting July 1. The law requires school boards to hire an “unbiased hearing officer” to handle complaints about teaching materials that are used in local schools. Any county resident can file a complaint, and the material in question will be removed from the curriculum if the hearing officer thinks that the material is “pornographic,” or “is not suited to student needs and their ability to comprehend the material presented, or is inappropriate for the grade level and age group.”

There are different voices in the new legislation, which affects 2.7 million public school students in Florida. Proponents argue that it gives residents more right in participating in their children’s education. A sponsor, state Rep. Byron Donalds (R-Naples), said that his intent wasn’t to target any particular subject. However, Glenn Branch, deputy director of the National Council for Science Education, is worried that science instruction will be challenged since evolution and climate change have been disputed subjects. A group called Florida Citizens for Science asked people to pay close attention to classroom materials and “be willing to stand up for sound science education.”

Like the new law in Florida, the legislature in Idaho rejected several sections of the state’s new public school science standards related to climate change and requested a resubmission for approval this fall. Since the Trump administration began, there has been “a new wave of bills” targeting science in the classroom. To protect teacher’s “academic freedom,” Alabama and Indiana adopted non-binding resolutions that encourage teachers to discuss the controversy around subjects such as climate change. A supporter of the resolution, state Sen. Jeff Raatz (R-Centerville), told Frontline, “Whether it be evolution or the argument about global warming, we don’t want teachers to be afraid to converse about such things”. (Sarah Kaplan, Washington Post)


Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

July 7, 2017 at 1:32 pm

Science Policy Around the Web – June 27, 2017

leave a comment »

By: Sarah Hawes, PhD

Source: pixabay


An Arms Race with Nature

H7N9, a new bird flu emerging in China, has infected roughly 1,500 people and killed 40% of them. The virus is contracted directly from infected birds but is not yet easily transmissible between humans, however researchers at The Scripps Research Institute have evidence H7N9 could potentially become transmissible between humans fairly easily. They examined a fragment of the virus that interacts with receptors on animal cells to gain entrance, and identified three minor mutations that could cause the fragment to shift from preferentially entering avian cells to preferentially entering human cells. If these mutations were to occur, it could rapidly result in a pandemic.

Tests in a viral fragment do not prove functionality in the intact virus; that would require mutating H7N9 itself. A 2014 moratorium on mutating three types of viruses (SARS, MERS, influenza) to more dangerous forms is expected to lift when the Department of Health and Human Services finishes current work drafting a new policy establishing reviews designed to assess benefit/risk ratios before funding research.

The subject is divisive, even among scientists in the field. Stanford researcher David Relman says he would support efforts to test mutations in a weakened strain of flu, but not in the H7N9 virus.  Bioterrorism expert Thomas Inglesby opposes increasing the contagious lethality of a virus, and opposes publishing such procedures due to concern that less benevolent actors would be enabled to replicate the process. NIH funded researcher, Ron Fouchier in the Netherlands, whose alteration of H5N1 to become highly contagious between ferrets (the animal model for humans) in 2011 influenced the moratorium, believes examining dangerous virus mutations in a controlled lab environment is important to identify potential pandemic viruses.

Many of these topics were discussed at the recent Immunology and Evolution of Influenza Symposium, and are sure to be a hot topic at the July 16 – 19 Centers of Excellence for Influenza Research and Surveillance meeting. With policy guidance needed on benefit/risk, potentially safer models, security, and publication limitations, the new HHS policy will be critical. (Nell Greenfieldboyce, NPR)


Modeling with Dough – Pick your Species

The Supreme Court found the Endangered Species Act was “intended to halt and reverse the trend toward species extinction—whatever the cost.” Today, in light of the cost, conservation policy makers are being invited to triage species extinctions. Fish and Wildlife Service representatives recently met with ecologist Dr. Leah Gerber to discuss her proposed use of an algorithm guiding conservation funding.

A self-proclaimed environmentalist, Gerber says her model suggests that defunding “costly failures,” including the spotted owl, golden-cheeked warbler and gopher tortoise, could help save about 180 other species. Gerber says policy makers may opt to continue to support species that her algorithm rejects, as was done for the koala in Australia where algorithm triage has been used. In this case, a popularity contest may determine who lives and who goes extinct.

Details of the algorithm are not explicit, but Dr. Gerber’s recent publication in PNAS is a straightforward return-on-investment calculation analyzing the mathematical relationship between funds requested, spent, and species success or decline.  Gerber finds “the cost–success curve is convex; funding surpluses were common for the species least likely and most likely to recover” so it’s not simply ‘money in – species out’. Other factors – endemism, keystone status, level of species risk – are also important, though Gerber acknowledges they are not currently included.

While proponents call use of the equation “doing the best you can with what you have,” lack of data on its predictive validity make it a frightening policy tool governing something as permanent as species extinction. What if region affects costs, population growth is slower in species reaching sexual maturity later, a break-through in understanding one species’ requirements is just around the corner or we haven’t yet discovered the significance of the niche occupied by another species? What if business or political interests conflict with a species’ needs? What if the algorithm developer seeks intellectual property legal status, as is happening now with a proprietary algorithm used in parole and sentencing situations? Algorithms impacting public policy should be vetted by multiple experts in germane disciplines, validated, and kept publicly accessible for healthy scrutiny. (Sharon Bernstein, Reuters)


Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

June 27, 2017 at 11:42 am

Science Policy Around the Web – June 23, 2017

leave a comment »

By: Saurav Seshadri, PhD

Drug Policy

Trump’s New Policy to Tackle Sky-High Drug Prices Makes Sense — Sort Of

Tackling high prescription drug prices was a repeated promise of the Trump campaign. The Trump administration has now taken its first step towards fulfilling this pledge, outlined in a blog post by Food and Drug Administration (FDA) commissioner Scott Gottlieb. The agency will pursue a Drug Competition Action Plan, whose goal will be to eliminate obstacles to the development of cheap generic drugs – particularly those caused by loopholes in existing FDA policies, which are exploited by pharmaceutical companies to extend their patent exclusivity period and maximize profits. An example of such ‘gaming’ the system, cited in the post, is the practice of limiting access to branded products for comparative testing by generic developers. Ultimately, the FDA will work closely with the Federal Trade Commission (FTC) to address such issues, since directly regulating business practices is outside its mandate.

On its face, the FDA’s effort is a step in the right direction. Availability of generics reduces the cost of medications by over half within the first year, and according to a recent Congressional report, manufacturers state that ‘competition…is the primary driver of generic drug prices’. However, it ignores evidence that the real driver of increased drug spending is new, branded medicines, not overpriced generics. In fact, early indications are that Trump’s policies will favor the pharmaceutical companies that produce such medicines, by reducing regulations and apparently abandoning his promise to enable the government to negotiate drug pricing through Medicare. Overall, these actions signal a commitment to promoting free market mechanisms in the pharmaceutical industry; time will tell whether this approach will actually lead to more affordable drugs. (Julia Belluz, Vox)


In a Major Shift, Cancer Drugs go ‘Tissue-Agnostic’

With the landmark approval of Keytruda in May, the Food and Drug Administration (FDA) appears to have ushered in a new era of cancer drug development.  So far, cancer treatment and drug evaluation have largely used the tumor’s tissue of origin as a starting point. Keytruda (an immune system enabling drug developed by Merck and approved for melanoma in 2014) marked the first departure from this approach, receiving priority approval to treat any solid tumor containing a mutation in the mismatch repair pathway, regardless of context. Recently released data suggests that another tissue-agnostic cancer therapy is on the way: larotrectinib (a cell growth inhibitor developed by Loxo Oncology) showed high efficacy for any tumor with a certain biomarker (TRK fusion). Several other such drugs, whose indications will be based on tumor genetics rather than location, are in the clinical pipeline.

Although these advances have generated significant excitement in the cancer community, some caveats exist. First, identifying the patients that could benefit from tissue-agnostic treatments will require individual initiative and depend on the cost of screening, particularly when considering markers that are rare for a certain tumor type. A potential solution is suggested by the NCI-MATCH trial, part of the NIH’s Precision Medicine Initiative (PMI) – in it, patients can enroll in one of several parallel clinical trials if a corresponding drug-targeted mutation is found in their tumor’s genome. If these trials prove effective, patients could eventually be regularly matched with a personalized, tissue-agnostic, biologically valid treatment, based on a standardized screen.  Second, researchers caution that tissue-agnostic studies should have a strong scientific rationale and/or breakthrough-level efficacy. Otherwise, such efforts ‘could actually slow drug development if there are differential effects across tumor types by diverting resources from enrolling patients in a predominant population or in the tumor type most likely to respond’.

Despite these concerns, the tissue-agnostic paradigm offers great promise for cancer patients. NIH-funded resources such as The Cancer Genome Atlas could be invaluable to this field moving forward. (Ken Garber, Science)

Scientific Publishing

US Court Grants Elsevier Millions in Damages from Sci-Hub

A New York district court has awarded academic publishing giant Elsevier $15 million in damages from Alexandra Elbakyan, founder of the website Sci-Hub, for copyright infringement. Elbakyan, a 27-year-old neuroscientist turned programmer, started Sci-Hub in 2011 with the goal of ‘remov[ing] all barriers in the way of science’. The site allows users to download research papers that would normally be blocked by a paywall, by obtaining credentials from subscribing institutions and using them to access publisher-run databases like ScienceDirect. Over 60 million papers are posted on Sci-Hub, and users downloaded 28 million articles in 2016.

Elbakyan’s case is reminiscent of Aaron Swartz, another high-profile champion of open access to scientific research. Faced with federal charges related to his hacking of journal archive JSTOR, Swartz tragically committed suicide in 2013. Both Elbakyan and Swartz found publishers’ ability to profit from restricting access to scientific literature, effectively withholding knowledge from anyone outside of a privileged inner circle, as well as the legal protection provided to this system, to be deeply unethical. Their willingness to act upon these convictions has earned each a sizable following in the scientific community.

For their part, publishers claim that fees go towards overhead, and point to significant efforts to expand free and open access programs. While judges have so far been sympathetic, Elsevier’s legal battle has been largely one-sided. Elbakyan has been ignoring rulings requiring her to shut down Sci-Hub since 2015, opting to simply change domains instead, and since she is currently based in Russia and has no American assets, she is unlikely to pay any damages. (Quirin Schiermeier, Nature News)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

June 23, 2017 at 11:00 am

Science Policy Around the Web – June 20, 2017

leave a comment »

By: Eric Cheng, PhD

Source: Flickr, via Creative Commons (CC BY 2.0)

Research Funding

America is Still First in Science, but China Rose Fast as Funding Stalled in U. S. and Other Countries

American scientific groups continue to publish more biomedical research discoveries than groups from any other country, and the United States still leads the world in research and development expenditures. However, American dominance is slowly diminishing as China’s increase in funding on science over the last twenty years are starting to pay off. Chinese biomedical research now ranks fourth in the world for total number of discoveries published in six top-tier journals. This is with China spending three-fourths of the amount of money that the U.S. spent on research and development in 2015. In addition, new discoveries and advances in science are becoming more of a collaborative effort, which include researchers from around the world.

These findings come from research published in The Journal of Clinical Investigation by a group of University of Michigan researchers. The analysis comes at an important time for Congress to think about whether the annual uncertainty of the National Institutes of Health’s(NIH) budget and proposed cuts are in the nation’s best interest over the long-term. Bishr Omary, the senior author of the article commented, “If we continue on the path we’re on, it will be harder to maintain our lead and, even more importantly, we could be disenchanting the next generation of bright and passionate biomedical scientists who see a limited future in pursuing a scientist or physician-investigator career.”

The research was based on data up to 2015. During the current fiscal year of 2017, funding for NIH was proposed to be increased by 2 billion dollars, which is the second year in a row where funding was increased after 12 years of flat budgets. With this increase in funding, Omary hopes that, “our current and future investment in NIH and other federal research support agencies will rise above any branch of government to help our next generation reach their potential and dreams.” (University of Michigan, ScienceDaily)

Opioid Crisis

The Role of Science in Addressing the Opioid Crisis

Opioid addiction is an ongoing public health crisis. Millions of individuals all over the United States suffer from opioid use disorder with millions more suffering from chronic pain. Due to the urgency and scale of this crisis, innovative scientific solutions need to be developed. As part of a government-wide effort to address this crisis, the National Institutes of Health (NIH) is supplementing current research efforts with a public-private collaborative research initiative on pain and opioid abuse.

The Director of NIH, Dr. Francis Collins met with research and development leaders from biopharmaceutical companies in April 2017 to discuss new ways in which  government and industry can work together to address the opioid crisis. Dr. Collins stated how some advances such as improved formulations, opioids with abuse-deterrent properties, longer-acting overdose-reversal drugs, and repurposing of treatments approved for other conditions may be quick. Other advances such as mu-opioid receptor-based agonists, opioid vaccines, and novel overdose-reversal medications may be slower to develop. Overall, the goal for this partnership is to reduce the time typically required to develop new, safe, and effective therapeutics to half the average time. (Nora D. Volkow and Francis S. Collins, New England Journal of Medicine)

Climate Change

France is Offering US Scientists 4-year Grants to Move to the Country and do Research

Following President Donald Trump’s decision to withdraw the United States from the Paris climate agreement, France created an initiative that will allow researchers, teachers, and students to apply for a fully financed four-year grant to combat climate change. The website for the initiativesays,

“You will be able to stay in France at least for the duration of the grant, and longer if you are granted a permanent position. There is no restriction on your husband / wife working in France. If you have children, note that French public schools are free, and the tuition fees of universities and ‘grandes écoles’ are very low compared to the American system.”

Since Emmanuel Macron won the French presidential election in May, he has addressed American scientists who feel alienated by the Trump administration. Macron has promised strong funding for climate initiatives. However, some U.S. scientists like David Blockstein of the National Council for Science and the Environment see Macron’s invitation as “both a publicity stunt and a real opportunity.” Although it is not very likely that many U.S. researchers will take up the offer, it does provide a “sharp contrast to an increasingly hostile U.S. political environment for science.” (Chris Weller, Business Insider)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

June 20, 2017 at 1:10 pm