Science Policy For All

Because science policy affects everyone.

Science Policy Around the Web – December 22, 2015

leave a comment »

By: Allison S. Burrell, MS, MPhil

Photo credit: via

Nuclear Policy and Science Diplomacy

When Scientists Do What Diplomats Can’t

Scientists are playing a role in ongoing nuclear negotiations with Iran’s Atomic Energy Organization and the United States, as well as five other PN+1 countries. An agreement was signed in July 2015, and as of September, new bids by the US Senate have not been able to hinder the deal from moving forward. As this deal is implemented, economic sanctions against Iran currently in place will be slowly lifted in exchange for increased controls on Iran’s nuclear-weapons program. Science diplomats partner with political diplomats to ensure a proper understanding of the scientific details underlying the economic negotiations underway. This type of partnership is essential, and science diplomacy has been integral in international politics related to atomic weapons since the Manhattan Project back in 1945.

Scientists travel the world communicating and sharing their science through topic-specific conferences. This creates an international community of scientists, where borders are blurred and science is the common language. US secretary of Energy’s Ernest Moniz, and Iran’s head of the Atomic Energy Organization, Ali Akbar Salehi, both went to MIT, although at different times. But their common ground in physics and nuclear engineering allowed for a more personal relationship during these heated economic negotiations. It is proposed that the language of science is what brought the Iranian atomic negotiations back on track, accomplishing what political negotiations alone could not. Those who oppose the Iranian deal fundamentally disagree with the politics, yet still praise scientists’ role in negotiations. Scientists alone can’t be expected to understand the intricacies of political negotiations. Science diplomacy is slowly becoming a more popular term. The international editor for Science magazine, Richard Stone, believes that scientists “can come together and bond over a common cause…no matter where they are [from]”, and this is a strength that can be harnessed in the international diplomatic forum. (Audra Wolfe, The Atlantic)

Biosafety, Biosecurity and Risk

A more systematic approach to biological risk

In the past few years there have been worrying events that lay out the question of the status of biosafety and biosecurity in the U.S. Just last year, vials labeled variola, aka smallpox, were found in a freezer at the National Institutes of Health, and later determined to be viable. These pathogens, such as anthrax, smallpox and avian flu, have strict handling and storage protocols, which were not properly followed. In response to these events, as recently as October 2015, the White House laid plans, through a memorandum, to improve U.S. biosecurity and biosafety. Managing biological risk is a top priority, yet not much has changed since the well-known 1975 Asilomar meeting, which discussed the potential guidelines for using recombinant DNA.

Current meetings to address new biotechnology issues are still coming up short. Emerging biosafety and security issues cannot be treated solely as technical issues, but must also be represented from a governance standpoint. The National Institutes of Health, being the largest scientific funding agency in biological research, is currently evaluating a risk-benefit analysis of gain-of-function research, just as the National Academies of Science are evaluating gene editing and gene drives. Without outside governance, the end results run the risk of being biased towards success at any cost. Since the people making the decisions are specialists, they are also often involved in conducting the research, creating a conflict of interest. There is something to the thought, that if you are too close to a problem/project, you can’t see mistakes or alternatives.

There are committees or boards, such as the National Science Advisory Board for Biosecurity (NSABB), or the Presidential Commission for the Study of Bioethical Issues (PCSBI), that help with overseeing guideline creation for new biotechnologies. But these committees lack authority to impose rules that highlight biosecurity and risk. Mechanisms that are effective at regulation lie mostly in blocking or rescinding public funding, or inflicting fines. Transparency, through public reporting, is lacking, and this hinders investigations looking into improving risk strategies.

The advancement of scientific discovery is inevitable, and in order to protect our future, political and scientific realms must meet in a new arena, thus fostering a side-by-side collaboration of political and technical expertise. Science diplomacy, even on a national level, is key to moving forward with biosafety and biosecurity regulations. A new oversight position, as well as a coordinating committee, should be created in the U.S. government; that which focuses on anticipating and managing biotechnological risks, and works closely, through accountability and transparency, with the NIH, other federal agencies, and organizations intimately involved in emerging biotechnologies. (Megan J. Palmer, Francis Fukuyama and David A. Relman, Science Magazine)

Federal Funding for Science

Congress ready to give NIH its biggest increase in 12 years

The National Institutes of Health, a world leader in biomedical research and funding, has experienced budget cuts across the board over the past decade, in line with other federal institutions. Although biomedical research is arguably one of the most important science endeavors to invest in the security of our future health, a budget increase has not been seen in over 12 years. A new federal spending bill is up for vote in Congress, and was introduced on December 16, 2015. If it passes the house, and the Senate, the NIH will receive a $2 billion funding increase. But a bipartisan compromise will be necessary to get this all the way to Obama’s desk to be signed into law.

Some of the hottest research topics receiving new funding with this bill are as follows: $200 million is allocated for a new presidential Precision Medicine Initiative, $350 million for Alzheimer’s research, $85 million for the BRAIN Initiative, $303 million in the effort to combat antibiotic-resistant bacteria, and $91 million towards opioid abuse programs.

NIH released a strategic plan of growth for the agency over a four-year period. How the new funding will be used towards this end is yet to be determined, since it was released before knowledge of the potential funding increase. Amazingly, even with the funding growth, adjusted for inflation, the NIH’s purchasing power is not comparable to its peak in 2003. Republican representative Tom Cole of Oklahoma wants a new goal for the future; to not just increase the budget this year, but in years to come as well.

Policy changes associated with the new spending bill include a hold on the Obamacare medical device tax for two years. The current restrictions preventing the CDC from researching gun violence, in effect for about 20 years, will not be lifted. The new legislation will limit e-cigarettes pre-market reviews. And new policy on genetically engineered salmon dictates that it will not be sold until new labeling guidelines are in place. (David Nather and Dylan Scott, Stat News)

Update: This spending bill passed both the house and the senate, and was signed into law by President Obama.

Have an interesting science policy link?  Share it in the comments!


Written by sciencepolicyforall

December 22, 2015 at 9:00 am

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s

%d bloggers like this: