Science Policy For All

Because science policy affects everyone.

Science Policy Around the Web – June 7, 2016

leave a comment »

By: Thaddeus Davenport, Ph.D.

Amazon Manaus forest” by Phil P Harris. – Own work. Licensed under CC BY-SA 2.5 via Wikimedia Commons.

Conservation Policy

A collaboration between science and religion for ecological conservation

Science has the potential to solve many of the world’s problems, but it may be overly optimistic to think that science alone can cure the world of all that ails it. Climate change and loss of biodiversity threaten humans in a way that we have yet to fully comprehend, and yet these problems emerged not as a result of some mysterious force, but rather because of simple human choices – the collective action (and inaction) of humans over the course of many years. This suggests that the solution to these most grand challenges does not only require scientific breakthroughs. Instead, the solution presents itself to us with a disappointing and somewhat undesirable simplicity: a problem created by humans might also be solved by human cooperation, responsibility, and ownership of our world and our problems. Indeed to tackle the world’s most complex challenges, science and society will need to work together.

Christine A. Scheller reported in March that the American Academy for the Advancement of Science (AAAS) annual meeting featured a dialogue on science, ethics, and religion (DoSER) discussion, which addressed the potential opportunities for collaboration between conservation scientists and religious communities in stemming the loss of biodiversity. The speakers included conservation biologist, Karen Lips, wildlife ecologist, Peyton West, and theologian, William Brown. Lips, the director of the Graduate Program in Sustainable Development and Conservation Biology at the University of Maryland, College Park discussed the decline of amphibious species and noted that while scientists may understand the causes of the problem and potential solutions, the efficacy of any conservation effort will require participation and engagement of those communities where species are going extinct. Similarly, West, the Executive Director of the Frankfurt Zoological Society-U.S. described the important and unique role of religious leaders in shaping the beliefs and behavior of their followers and highlighted the efforts of Catholic, Buddhist, and Islamic leaders to discourage ivory trafficking. Finally, Brown, a Columbia Theological Seminary Professor of the Old Testament observed that nature is represented in the Bible as the dominion of man – a perspective that has been historically “unhelpful” in encouraging conservation. He ended more positively, however, noting that “[m]uch of scripture affirms God’s love for all creation and acknowledges humanity’s vital connection with the nonhuman animal world.”

Science and religion are arguably the two most powerful thought systems in our global society. There is enormous potential to transform our world for the better if we can align the goals of each system toward creating a more just, balanced, healthy world and to identify opportunities for collaboration to achieve these goals. The DoSER program is an exciting forum in which these collaborations may take root. (Christine A. Scheller, AAAS)

Human Genetics

Why try to build a human genome from scratch?

Last week, a group of scientists released a report in the journal Science outlining their goals of building a complete human genome from scratch. This goal was initially discussed in a closed-door meeting, which drew criticism from those concerned about the ethics of such a proposition. The recent report is the product of that meeting and is intended to achieve transparency and to initiate an open discussion on the value, as well as the ethical and practical considerations of such a goal.

The proposed initiative is named “HGP-write” for human genome project – write, to differentiate it from the first, highly fruitful stage of reading the sequence of the human genome (HGP-read), which was completed in 2004. Perhaps in response to their initial criticism, the authors begin the report by acknowledging the ethical questions that will arise over the course of the project and emphasize that they hope to ensure responsible innovation by allocating a portion of research funding to facilitate “inclusive decision-making”. These will likely be valuable discussions with the potential to yield regulatory decisions that should be relevant for emerging gene-editing technologies, such as CRISPR, as well.

The authors go on to say that just as HGP-read produced a significant decrease in the cost of DNA sequencing, one of the goals of HGP-write is to develop technology that will make synthesizing large pieces of DNA faster and cheaper – they cite an optimistic goal of decreasing “the costs of engineering and testing large (0.1 to 100 billion base pairs) genomes in cell lines by over 1000-fold within ten years.”

But how would this technology be applied? The authors provide a number of examples, notably focused on the cell and organ level, including: to facilitate the growth of transplantable human organs in other animals and to engineer cell lines or organoids for cost-efficient vaccine and pharmaceutical development, among others. Additionally, the authors note that this ambitious project would begin by synthesizing small pilot genomes and DNA fragments, and that even these small-scale projects would be of substantial value, for example to synthesize an entire gene locus including associated noncoding DNA may provide insight into the regulatory role of noncoding DNA in gene expression and disease. The project is expected to begin this year with an initial investment of $100 million from a variety of public and private sources, and the authors estimate that in the end the project will cost less than the $3 billion spent during HGP-read.

Without a doubt, there is much good that could come from HGP-write – the ethical debate, the technological advances, a better understanding of the so-called “junk” DNA that makes up the majority of the human genome, and the applications of synthesized genomes. It is an exciting proposition that should be approached carefully and inclusively.

Peer Review Process

Confronting Bias in Peer Review

Humans are unavoidably flawed, and one of our greatest flaws is that each of us carries subtle biases – preconceptions about the world that shape our view and simplify our interaction with an unimaginably complex world. The essential role of peer-review in the scientific endeavor is founded on the assumption that our peers are able to think and make objective assessments of the value and quality of our work, without bias. In a system of thinking and observation that depends entirely on objective, measurable truths, there should be no value placed on who made the observation. Unfortunately, science and decisions about publishing and funding scientific research are exclusively human activities, and thus they are subject to the irrational biases that are so characteristically human.

No one – not even a scientist – is free of bias, and a recent AAAS-sponsored forum sought to highlight the presence of bias in scientific peer-review. Ginger Pinholster wrote about this forum on intrinsic bias in a Science magazine article from May 27th. Pinholster reports that multiple speakers observed that bias in scientific peer-review is not only a problem of fairness.  Geraldine Richmond, the AAAS Board Chair, noted that “unconscious assumptions about gender, ethnicity, disabilities, nationality, and institutions clearly limit the science and technology talent pool and undermine scientific innovation.”

Editors from the New England Journal of Medicine and the American Chemical Society pointed out a US-centric bias in peer-review. Gender bias was discussed as well by Suzanne C. Iacono, head of the Office of Integrative Activities at the National Science Foundation (NSF). Though success rates in grant funding from NSF were similar for men and women in 2014, women submitted only one quarter of the total grant applications. Iacono also noted that success rates for NSF applications submitted by African-American scientists were lower than the overall success rate of submitted applications (18% vs 24%), but more worrisome is the fact that only 2% of the submitted applications were submitted by African-American scientists. Similarly Richard Nakamura, director of the Center for Scientific Review at the National Institutes of Health (NIH) cited that African-American scientists have a success rate of funding from NIH that is approximately half that of white applicants.

While a number of potential interventions to minimize bias were discussed, including double-blind peer-review, it is clear from the relatively small number of funding applications from women and African-Americans that larger structural changes must occur to support and retain women and minority scientists early in their scientific development. The interest of AAAS in studying and addressing problems of bias in scientific peer-review is commendable. Understanding the problem is an important first step and finding a solution will require practice in self-awareness, as well as cooperation between high schools, universities, and finally funding and publishing agencies. (Ginger Pinholster, Science)

Have an interesting science policy link?  Share it in the comments!


Written by sciencepolicyforall

June 7, 2016 at 10:00 am

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: