Science Policy For All

Because science policy affects everyone.

Archive for January 2017

Science Policy Around the Web – January 27, 2017

leave a comment »

By: Nivedita Sengupta, PhD

Source: NIH Image Gallery on Flickr, under Creative Commons

Human Research Regulation

US Agency Releases Finalized ‘Common Rule’, Which Govern Human-Subjects Research

On September 8, 2015 the US Department of Health and Human Services (HHS) proposed significant revisions to the Federal Policy for the Protection of Human Subjects which is also known as the “Common Rule”. “Common Rule” is the set of federal regulations governing the conduct of clinical research involving human subjects. Among the proposed changes, an important one was regarding getting peoples’ consent before using the biological samples for subsequent studies. On 18th January 2017, the final version of the rule was released in which the proposed change was abandoned. This is a blow to the patient-privacy advocates, however the US National Academies of Sciences, Engineering and Medicine argued against that requirement and others citing that the changes would impose an undue burden on researchers and recommended that it be withdrawn.

The current version of Common Rule has generated mixed feelings among people. Researchers are happy that the government listened to scientists’ fears about increased research burdens whereas people like Twila Brase, president and co-founder of Citizens’ Council for Health Freedom in St Paul, Minnesota, are disappointed as they believe that these specific changes are ought to be made. Moreover the new version of the Common Rule requires that scientists include a description of the study, along with the risks and benefits, on the consent forms used by patients, and federally-funded trials should post patient consent forms online. However, these requirements do not extend to trials that are conducted with non-federal funds. (Sara Reardon, Nature News)

Biomedical Research

An Open-Science Effort to Replicate Dozens of Cancer-Biology Studies is Off to a Confusing Start

The Reproducibility Project on Cancer Biology was launched in 2013 to scrutinize the findings of 50 cancer papers from high-impact journals. The aim is to determine the fraction of influential cancer biology studies that are sound. In 2012, researchers at the biotechnology firm Amgen performed a similar study and announced that they had failed to replicate 47 of 53 landmark cancer papers but they did not identify the studies involved. In contrast, the reproducibility project makes all its findings open. Full results should appear by the end of the year and eLife is already publishing five fully analyzed reports in January. Out of the five, one failed to replicate and the remaining four showed replication results that are less clear.

These five results paint a muddy picture for people waiting for the outcome to determine the extent of impact of these studies. Though some researchers praised the project, others feared unfair discredit of their work and career. According to Sean Morrison, a senior editor at eLife, the reason for the “uninterpretable” results is “Things went wrong with tests to measure the growth of tumors in the replication attempts and the replication researchers were not allowed to deviate from the protocols, which was agreed at the start of the projects in consultation with the original authors”. “Doing anything else — such as changing the experimental conditions or restarting the work — would have introduced bias”, says Errington, the manager of the reproducibility project.

According to Errington, the clearest finding from this project is that the papers include very few details about their methods. The replication researchers had to spend hours to work out the detailed protocols and reagents along with the original authors. Even after following the exact protocols, the final reports include many reasons why the replication studies might have turned out differently, including variations in laboratory temperatures to tiny variations in how a drug was delivered. He thinks that the project helps to bring out such confusing details to the surface, and it will be a great service for future follow up work to develop a cure for cancer. However, scientists think that such conflicts mean that the replication efforts are not very informative and couldn’t be compared to the original and will only cause delays in advancing future clinical trials. (Monya Baker and Elie Dolgin, Nature News)

 

Have an interesting science policy link?  Share it in the comments!

Containing Emerging and Re-emerging Infections Through Vaccination Strategies

leave a comment »

By: Arielle Glatman Zaretsky, PhD

Source: CDC [Public Domain], via Wikimedia Commons

           Throughout history, humans have sought to understand the human body and remedy ailments. Since the realization that disease can be caused by infection and the establishment of Koch’s postulates, designed to demonstrate that a specific microbe causes a disease, humans have sought to identify and “cure” diseases. However, while we have been successful as a species at developing treatments for numerous microbes, viruses, and even parasites, pure cures that prevent future reinfection have remained elusive. Indeed, the only human disease that has been eradicated in the modern era (smallpox) was eliminated through the successful development and application of preventative vaccines, not the implementation of any treatment strategy. Furthermore, the two next most likely candidates for eradication, dracunculiasis (guinea worm disease) and poliomyelitis (polio), are approaching this status through the use of preventative measures, via water filtration and vaccination, respectively. In fact, despite the recent pushback from a scientifically unfounded anti-vaxxers movement, the use of a standardized vaccination regimen has led to clear reductions in disease incidence of numerous childhood ailments in the Americas, including measles, mumps, rubella, and many others. Thus, although the development of antibiotics and other medical interventions have dramatically improved human health, vaccines remain the gold standard of preventative treatment for the potential of disease elimination. By Centers for Disease Control and Prevention [Public domain], via Wikimedia Commons

Recently, there have been numerous outbreaks of emerging or reemerging infectious diseases. From SARS to Ebola to Zika virus, these epidemics have led to significant morbidity and mortality, and have incited global panic. In the modern era of air travel and a global economy, disease can spread quickly across continents, making containment difficult. Additionally, the low incidence of these diseases means that few efforts are exerted to the development of treatments and interventions for them, and when these are attempted, the low incidence further complicates the implementation of clinical trials. For example, though Ebola has been a public health concern since the first outbreak in 1976, no successful Ebola treatment or vaccine existed until the most recent outbreak of 2014-2016. This outbreak resulted in the deaths of more than 11,000 people, spread across more than 4 countries, and motivated the development of several treatments and 2 vaccine candidates, which have now reached human trials. However, these treatments currently remain unlicensed and are still undergoing testing, and were not available at the start or even the height of the outbreak when they were most needed. Instead, diseases that occur primarily in low income populations in developing countries are understudied, for lack of financial incentive. Thus, these pathogens can persist at low levels in populations, particularly in developing countries, creating a high likelihood of eventual outbreak and potential for future epidemics.

This stream of newly emerging diseases and the re-emergence of previously untreatable diseases brings the question of how to address these outbreaks and prevent global pandemics to the forefront for public health policy makers and agencies tasked with controlling infectious disease spread. Indeed, many regulatory bodies have integrated accelerated approval policies that can be implemented in an outbreak to hasten the bench to bedside process. Although the tools to identify new pathogens rapidly during an outbreak have advanced tremendously, the pathway from identification to treatment or prevention remains complicated. Regulatory and bureaucratic delays compound the slow and complicated research processes, and the ability to conduct clinical trials can be hindered by rare exposures to these pathogens. Thus, the World Health Organization (WHO) has compiled a blueprint for the prevention of future epidemics, meant to inspire partnerships in the development of tools, techniques, medications and approaches to reduce the frequency and severity of these disease outbreaks. Through the documentation and public declaration of disease priorities and approaches to promote research and development in these disease areas, WHO has set up a new phase of epidemic prevention through proactive research and strategy.

Recently, this inspired the establishment of the Coalition for Epidemic Preparedness Innovations (CEPI) by a mixed group of public and private funding organizations, including the Bill and Melinda Gates Foundation, inspired by the suggestion that an Ebola vaccine could have prevented the recent outbreak if not for the lack of funding slowing research and development, to begin to create a pipeline for developing solutions to control and contain outbreaks, thereby preventing epidemics. Instead of focusing on developing treatments to ongoing outbreaks, the mission at CEPI is to identify likely candidates for future outbreaks based on known epidemic threats and to lower the barriers for effective vaccine development through assisting with initial dose and safety trials, and providing support through both the research and clinical trials, and the regulatory and industry aspects. If successful, this approach could lead to a stockpile of ready-made vaccines, which could easily be deployed to sites of an outbreak and administered to aid workers to reduce their morality and improve containment. What makes this coalition both unique and exciting is the commitment to orphan vaccines, so called for their lack of financial appeal to the pharmaceutical industry that normally determines the research and development priorities, and the prioritization of vaccine development over treatment or other prophylactic approaches. The advantage of a vaccination strategy is that it prevents disease through one simple treatment, with numerous precedents for adaptation of the vaccine to a form that is permissive of the potential temperature fluctuations and shipping difficulties likely to arise in developing regions. Furthermore, it aids in containment, by preventing infection, and can be quickly administered to large at risk populations.

Thus, while the recent outbreaks have incited fear, there is reason for hope. Indeed, the realization of these vaccination approaches and improved fast tracking of planning and regulatory processes could have long reaching advantages for endemic countries, as well as global health and epidemic prevention.

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

January 26, 2017 at 9:47 am

Science Policy Around the Web – January 24, 2017

leave a comment »

By: Leopold Kong, PhD

Landfill by Dhscommtech at GFDL, via Wikimedia Commons

Environment

New Discovery Could Lead to a Safer Solution to Plastic Pollution

Polyethylene terephthalate (PET) is a commonly used resin of the polyester family used in the fibers for clothing and liquid containers. In 2015 alone, 56 million tons of PET was produced. Although recyclable, with 1.5 billion pounds recovered annually in the United States, PET is not biodegradable and is a major presence in landfills. Screening 250 samples of contaminated soil, waste water and sludge from a bottle recycling factory for microorganisms that can grow on PET, a team of Japanese scientists has discovered a bacterium, Idoenella sakaiensis, that can break down this tough plastic. Recently spotlighted as a major breakthrough of 2016 by the American Chemical Society, research on the bacterium continues as scientists seek to unlock the mechanism behind the biodegradation pathway that was previously thought to be impossible. Professor Kenji Miyamoto, one of the study authors, said, “This is the first PET-degrading bacterium found [with potential] to develop a new and nature-friendly system”. (Research Highlights, Keio University).

Biomedical Research

Trump Asks NIH Director Francis Collins to Stay On

Last Thursday, on the eve of the inauguration, the National Institutes of Health (NIH) announced that Dr. Francis Collins has been asked to continue his role as NIH director by the Trump administration for an unspecified time. This eleventh hour development came as Collins received back the letter of resignation he had sent late last year, something all presidential appointees do. If asked to stay on through this presidential term, Collins, part of Obama’s science ‘dream team’, would be the first NIH director since the 1970s to be chosen by two presidents.

Ezekiel Emanuel, a bioethicist at the University of Pennsylvania said, “In general, I think more than eight years has not been a good idea. There’s a cycle, and eight years is hard to have new ideas and new energy.”  Nonetheless, Collins, a National Academy of Sciences member who led the human genome project and a highly vocal Christian apologist, would serve as an effective bridge between the research community and the new Republican administration to secure much needed funding for basic research. Tony Mazzashi, senior director for policy and research at the Association schools and Programs of Public Health in Washington DC said, “ I think everyone in the research community will be thrilled.” (Jocelyn Kaiser, Science)

Public Health

Novavax Starts New Clinical Trial in Bid to Prove Failed RSV Vaccine

Respiratory Syncytial Virus (RSV) is a significant public health burden, infecting almost all children by age 2, with 5 to 20 out of 1,000 requiring hospitalization and with a mortality rate of 8 to 34 out of 10,000. Unfortunately, the development of an effective vaccine has been challenging. In the late 1960s, an RSV vaccine for infants devastatingly failed clinical trials with 80% of children receiving the shot being hospitalized. Recent advances in immunology and the RSV vaccine target has led to a new generation of potentially safer and more effective vaccine candidates from industry giants Novavax, GlaxoSmithKline, Global Vaccines, AstraZeneca and MedImmune. Also being explored is vaccination of expectant mothers to protect infants.

However, the field took a hit last year when Novavax’s candidate vaccine failed its phase 3 clinical trials, resulting in a 30% layoff of its workforce. Nonetheless, last Thursday, the company announced that it has started a new phase 2 trial on older adults in the southern hemisphere.  “We expect the results from this trial to inform the next steps in our older adults program and would ensure we maintain our leadership position in this very attractive market opportunity,” said Stanley Erck, president and CEO of Novavax. (Tina Reed, Washington Business Journal)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

January 24, 2017 at 10:04 am

Science Policy Around the Web – January 20, 2017

leave a comment »

By: Jessica Hostetler, PhD

Climate Change

Earth Sets a Temperature Record for the Third Straight Year

The New York Times reports that scientists named 2016 the hottest year on record. This follows the record set in 2015, which followed the record set in 2014 and marks the first time in history a temperature record was set three years in a row. The data is in agreement from three governmental institutions: the USA’s NOAA and NASA and the United Kingdom’s Met Office. The findings were based on “measurements from ships, buoys and land-based weather stations” used to compute an average global temperature of the earth’s surface. The El Niño weather pattern “released a huge burst of energy and water vapor into the atmosphere” and intensified warming in 2015 and 2016, but scientists agree the upward trend over many years is caused by increasing carbon dioxide and greenhouse gasses in the atmosphere.

The warming increases were particularly pronounced in the arctic with “temperatures in the fall running 20 to 30 degrees Fahrenheit above normal across large stretches of the Arctic Ocean” potentially exacerbating sea ice melting and coastal erosion. The heating of the ocean has implications for rises in ocean levels and increased tidal flooding. The calculations from NASA showed over a half a degree Fahrenheit of warming from 2013 to 2016 which is the largest three-year increase since records were started in 1880 and of “the 17 hottest years on record, 16 have now occurred since 2000.” Both NOAA and NASA will soon report to cabinet members appointed by the Trump Administration, with concerns raised from “agencies about whether their data will now be subject to political manipulation.” (Justin Gillis, New York Times)

Human Research Policy

New Rules Ease Consent Requirements for Scientists Using Patient Specimens

STAT News reports that the outgoing Obama Administration issued new rules on Wednesday, January 18th for conducting research with human participants referred to as the “Common Rule” , which include “stepping back from proposals that would have imposed significant new regulatory requirements on scientists.” Earlier versions of the proposal would have required informed, written consent for the use of biospecimens such as “cells, blood, tumor samples, DNA” etc. that were obtained during medical procedures even if the samples had all identifying information removed. Scientists argued that such a change would stifle research; for instance if researchers wanted to use specimens from a previous study where consent was given for a new study, a new consent would be required which would require tracking down each participant.  This would prove challenging for several new White House initiatives such as the Precision Medicine Initiative or the Cancer Moonshot. The proposed change drew 2100 comments during a 90-day public comment period following release in September 2015, and the Department of Health and Human Services responded by making changes to the proposal. (Sharon Begley, STAT News)

The final rule, as posted by the HHS website, includes the following:

  • The requirement for consent forms to provide potential research subjects with a better understanding of a project’s scope, including its risks and benefits, so they can make a more fully informed decision about whether to participate.
  • Requirements, in many cases, to use a single institutional review board (IRB) for multi-institutional research studies. The proposal from the NPRM has been modified, however, to add substantial increased flexibility in now allowing broad groups of studies (instead of just specific studies) to be removed from this requirement.
  • For studies on stored identifiable data or identifiable biospecimens, researchers will have the option of relying on broad consent obtained for future research as an alternative to seeking IRB approval to waive the consent requirement. As under the current rule, researchers will still not have to obtain consent for studies on non-identified stored data or biospecimens.
  • The establishment of new exempt categories of research based on the level of risk they pose to participants. For example, to reduce unnecessary regulatory burden and allow IRBs to focus their attention on higher risk studies, there is a new exemption for secondary research involving identifiable private information if the research is regulated by and participants protected under the HIPAA rules.
  • Removal of the requirement to conduct continuing review of ongoing research studies in certain instances where such review does little to protect subjects.
  • Requirement that consent forms for certain federally funded clinical trials be posted on a public website.

(Sharon Begley, STAT News)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

January 20, 2017 at 10:58 am

Science Policy Around the Web – January 17, 2017

leave a comment »

By: Kseniya Golovnina, PhD

Source: Wikimedia Commons, by Copyright (c) 2004 Richard Ling, under Creative Commons

Biodiversity

The Mysterious World of Antarctica is More than Penguins

On December 21, 2016 the Australian Antarctic Division (AAD) released a video, which was made under the sea ice in O’Brien Bay, south of Casey research station in East Antarctica. This was the last part of the Australian Antarctic program, led by Dr. Johnny Stark, with the aim to observe the effect of climate change and ocean acidification due to increased carbon dioxide emissions on the Southern Ocean seafloor communities.

AAD biologist Dr. Glenn Johnstone and his team launched a remotely operated vehicle (ROV) through the small hole drilled in the ice and captured a rare glimpse of wonderful colorful Antarctic underwater world. They discovered a flourishing community of sea life below the massive ice sheet, at 30 meters below the surface, where the water temperature is −1.5°C year round, and the sea is covered by ice that is 1.5 meters thick for more than 10 months of the year. The video surprisingly revealed “a habitat that is productive, colorful, dynamic and full of a wide variety of biodiversity, including sponges, sea spiders, urchins, sea cucumbers and sea stars.”

About 30% of the carbon dioxide emitted into the atmosphere is absorbed by the ocean and increases its acidity. According to NASA Earth Observatory, increased acidity will increase the ocean’s ability to absorb carbon dioxide, making the carbonate shells of marine organisms such as corals thinner and more fragile. Higher water temperatures would also decrease the abundance of phytoplanktons, which play an important role in the carbon cycle absorbing excess carbon dioxide from the atmosphere. The increased carbon dioxide in the ocean might facilitate the growth of a few species of phyplanktons that take carbon dioxide directly from the water, but overall excess carbon would be detrimental to most ocean species.

Scientists are only now beginning to understand the complex underwater Antarctic ecosystem. Antarctica may be one of the first places where the detrimental effects of ocean acidification are seen, says Dr. Stark. These studies could be a good future indicator of the effects of climate change and ocean acidification on ocean ecosystems. (Australian Antarctic Division)

Food Policy

One or Two Tablespoons of Nutella?

The Food and Drug Administration (FDA) has closed collecting public comments about a regulatory change that would cut Nutella’s labeled serving size by half. More than 650 comments were collected. “One tablespoon or two tablespoons?” – The Washington Post explains the difference. The issue was about the appropriate reference amount customarily consumed (RACC) and product category. Nutella is classified as a dessert topping, with a RACC of two tablespoons. The serving size typically indicates how much Americans consume at a time and not how much they should, to make it easy for people to compare different products.

Its manufacturer, Ferrero, has asked that Nutella be reclassified as a jam or put in a different product category. This would cut the serving size that Nutella displays on its labels to one tablespoon, which would also decrease the sugar and calorie counts. It is already the second request from Nutella’s company since 2014. As they said to the Washington Post “it was simply seeking clarity as it and other companies prepare their new Nutrition Facts labels, slated for release in 2018”. However, critics of Nutella’s FDA petition including Lindsay Moyer, a senior nutritionist at the Center for Science in the Public Interest, warn people about the marketing ploy to trick people into thinking that it has less calories. If Nutella’s serving size is changed to one tablespoon, it could advertise a mere 100 calories per serving — versus roughly 188 calories for two tablespoons of peanut butter, or 196 calories for almond.

At the same time the question of one or two tablespoons seems not so relevant if one takes a look at the company’s website, where they say “you could circle the world with the amount of Nutella produced every year”. U.S. sales of Nutella are up 39% — from $161.4 million to $224.3 million — in the past five years in comparison with 5% for other nut butters. (Caitlin Dewey, The Washington Post)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

January 17, 2017 at 12:09 pm

Science Policy Around the Web – January 13, 2017

leave a comment »

By: James Taylor, PhD

Source: pixabay

Brexit and Science

Scientists Need To Wake Up to the Opportunities of Brexit

The decision of the United Kingdom to leave the European Union last July has raised numerous concerns about the future of science within the UK, most notably regarding access to EU funding, such as Horizon 2020, and the effect of new immigration controls on non-UK researchers and students. A recent House of Lords report has called for the UK government and scientists to come together and address these concerns.

Firstly, the government should engage scientists throughout the negotiation process and not just in regards to funding. Leaving the EU will require reworking and harmonizing numerous consumer protection, environmental and manufactory laws, for which technical advice is indispensible. The report welcomes the recent increase in science funding from the government, but states that any loss in EU funding should be compensated for. They recommend that both the Department for International Trade (DIT) and the Department for Exiting the European Union (DExEU) appoint scientific advisors immediately.

Secondly, the report calls for the scientific community’s voice to be heard alongside that of business during the negotiations. The UK’s relationship with the EU has been consistently harmonious in regards to research, providing a solid point of agreement amongst more difficult negations.

Thirdly, the UK should explore research collaborations beyond the EU. The report suggests this could be realized if the UK were to offer to host a large, international research facility comparable to the Crick Institute or the Diamond Light Source. They also highlight the potential for industrial collaboration and reform of R&D taxation which would not be possible within the EU.

Immigration remains a key concern in regards to Brexit, with many EU scientists in the UK uncertain of their futures with many now considering leaving. The report emphasizes the need to attract and retain the best international talent going as far as to suggest 10 year research grants and support for immediate family for foreign scientific leaders. They also call for the government to clearly state how immigration laws will affect researchers coming to work in the UK, and that the number of international students coming to study in the UK should not count against any immigration targets. (Graeme Reid, The Guardian)

Biomedical Research

The New Face of US Science

A recent analysis has found that the face of biomedical research has changed considerably over the last few decades. The study, which pooled data on holders of PhDs working as biological or biomedical scientists from the Survey of Doctorate Recipients and the American Community Survey, found that the doubling of NIH funding between 1998 and 2004 had a profound effect on the demographics of the scientific workforce. The authors classify scientists who entered the workforce around this time (i.e. under 40s) as a new cohort, giving them the not so snappy title of “doubling boomers”.

The 1998 to 2004 funding increase meant the number of PhD graduates increased significantly during this time, but the lack of growth in academic positions and funding cuts mean that only 1 in 5 still work in academia (as compared to 1 in two in 1990). For the aspiring academic this may seem like terrible news, but the report also found that the majority of biomedical PhDs now work in the private sector where they earn around $30,000 more a year than their academic peers and report lower pressure to publish publications.

The work force is more diverse than ever, with almost half of young biomedical scientists coming from US minority races. The largest growth has come from Asian ethnic groups, followed by a modest increase in researchers from Latino backgrounds. However the proportion of black scientists showed only a minor increase. These demographics should be borne in mind when devising recruitment and retention strategies to make the workforce more egalitarian.

Finally they found that scientists under 40 are likely to have children around the time they will be applying for their first grant. This is particularly problematic for female scientists, who the study found were less likely to have a stay-at-home spouse who can shoulder household responsibilities. The current academic career trajectory does not take in to account these important differences.

Despite many of these problems being discussed anecdotally for quite some time, the systems for tracking the fates of holder of PhDs after they graduate remain lacking, especially for those who leave academia. The authors insist that better and more transparent data is critical for designing new policies to assist young researchers. (Misty Heggeness, Kearney Gunsalus, José Pacas and Gary McDowell, Nature News)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

January 13, 2017 at 10:37 am

Biosurveillance: Can We Predict And Prevent Infectious Disease Outbreaks?

leave a comment »

By: Teegan A. Dellibovi-Ragheb, PhD

The increasing frequency and scope of infectious disease outbreaks in recent years (such as SARS, MERS, Ebola and Zika) highlight the need for effective disease monitoring and response capabilities. The question is, can we implement programs to detect and prevent outbreaks before they occur, or will we always be reacting to existing outbreaks, trying to control the spread of disease and mitigate the harm to people and animals?

In some cases, the science suggests that we can predict the nature of the public health threat. For instance, scientists at the University of North Carolina at Chapel Hill identified a SARS-like virus, SHC014-CoV, that is currently circulating in Chinese horseshoe bat populations. This virus is highly pathogenic, does not respond to SARS-based therapies, and can infect human cells without the need for adaptive mutations. Furthermore, there are thought to be thousands of related coronaviruses in bat populations, some of which could emerge as human pathogens. These findings suggest that circulating SARS-like viruses have the potential to cause another global pandemic, and resources need to be dedicated to surveillance and the development of more effective therapeutics.

What is biosurveillance?

In 2012 President Obama released the first-ever National Strategy for Biosurveillance, whose purpose is to better integrate the many disparate governmental programs and non-governmental organizations that collect and monitor public health data. The Strategy defines biosurveillance as “the process of gathering, integrating, interpreting, and communicating essential information related to ‘all-hazards’ threats or disease activity affecting human, animal, or plant health to achieve early detection and warning, contribute to overall situational awareness of the health aspects of an incident, and to enable better decision making at all levels”. The “threats” described by the Strategy include emerging infectious diseases, pandemics, agricultural and food-borne illnesses, as well as the deliberate use of chemical, biological, radiological and nuclear (CBRN) weapons.

The overall goal of the Strategy is “to achieve a well-integrated national biosurveillance enterprise that saves lives by providing essential information for better decision making at all levels”. This goal is broken down into four core functions: (1) scan and discern the environment; (2) identify and integrate essential information; (3) inform and alert decision makers; and (4) forecast and advise potential impacts.

How are these programs implemented?

A number of programs were launched in response to President Obama’s Strategy. For instance, USAID’s Emerging Pandemic Threats (EPT) program created four complementary projects (Predict, Prevent, Identify, and Respond) which together aim to combat zoonotic outbreaks in 20 developing countries in Africa, Asia and Latin America that are hotspots of viral evolution and spread. Predict focuses on monitoring the wildlife-human interface to discover new and reemerging zoonotic diseases. The Prevent project aims to mitigate risk behavior associated with animal-to-human disease transmission. Identify works to strengthen laboratory diagnostic capabilities, and Respond focuses on preparing the public health workforce for an effective outbreak response.

There are many other agencies besides USAID and the State Department that participate in biosurveillance and biosecurity, including the Department of Health and Human Services (through the Biomedical Advanced Research and Development Authority). The Department of Defense and the Department of Homeland Security both have biosecurity programs as well (the Defense Threat Reduction Agency and the National Biodefense Analysis And Countermeasures Center, respectively). These focus more on protecting the health of armed forces and combatting deliberate acts of terror, however there is still a lot of overlap with emerging infectious diseases and global health. A comprehensive disaster preparedness strategy requires coordination between agencies that may not be used to working together, and who have very different structures and missions.

What are the challenges?

Global disease surveillance is a critical aspect of our biosecurity, due to accelerated population growth and migration, and worldwide movement of goods and food supplies. Political instability, cultural differences and lack of infrastructure in developing countries all present obstacles to effective global biosurveillance. These are complex issues, but are critically important to address, as rural populations in low- and middle-income countries can become hotspots of infectious disease outbreaks. This is in part due to the lack of sanitation and clean water, and the close contact with both domestic and wild animals.

Another challenge is determining the most effective metrics with which to monitor public health data. Often by the time a new pathogen has been positively identified and robust diagnostic measures implemented, a disease outbreak is well under way. In some cases, the actions of health workers can make the situation worse, such as in the tragic mishandling of the 2010 cholera outbreak in Haiti by the United Nations. One approach that has been shown to be effective for early detection is the use of syndromic surveillance systems, such as aggregating data from emergency room visits or the sale of over-the-counter medication. When combined with advanced computing techniques and adaptive machine learning methods this provides a powerful tool for the collection and integration of real-time data. This method can alert public health officials much earlier to the existence of a possible outbreak.

Scientific research on high-consequence pathogens is a key aspect of an effective biosecurity program. This is how we develop new diagnostic and therapeutic capabilities, as well as understand how pathogens spread and evolve. However, laboratories can also be the initial source of an infection, such as the laboratory-acquired tularemia outbreak, and research with the most dangerous pathogens (Select Agent Research) must be carefully monitored and regulated. It has been an ongoing challenge to balance the regulation of Select Agents with the critical need to enhance our scientific understanding of these pathogens. Of particular concern are gain-of-function studies, or Dual Use Research of Concern (DURC). From a scientific standpoint, these studies are vital to understanding pathogen evolution, which in turn helps us to predict the course of an outbreak and develop broad-spectrum therapeutics. However this also poses a security risk, since it means scientists are deliberately increasing the virulence of a given pathogen, such as the experimental adaptation of H5N1 avian influenza to mammalian transmission, which could pose a significant public health threat if deliberately misused.

How well are we doing?

The International Security Advisory Board, a committee established to provide independent analysis to the State Department on matters related to national and international security, published a report in May of 2016 on overseas disease outbreaks. They make a number of recommendations, including: (1) better integration of public health measures with foreign policy operations; (2) working with non-governmental organizations and international partners to increase preparedness planning and exercises; (3) increase financial support and reform structural issues at the World Health Organization to ensure effective communication during crises; (4) bolster lines of communication and data sharing across the federal government, in part through the establishment of interagency working groups; and (5) strengthening public health programs at the State Department and integrating public health experts into regional offices, foreign embassies and Washington for effective decision making at all levels.

The RAND Corporation, an independent think tank, conducted a review of the Department of Defense biosurveillance programs. They found that “more near-real-time analysis and better internal and external integration could enhance its performance and value”. They also found funding to be insufficient, and lacking a unified funding system. Improvements were needed in prioritizing the most critical programs, streamlining organization and governance, and increasing staff and facility resources.

RAND researchers also published an article assessing the nation’s health security research. They found that federal support is “heavily weighted toward preparing for bioterrorism and other biological threats, providing significantly less funding for challenges such as monster storms or attacks with conventional bombs”. In a study spanning seven non-defense agencies, including the National Institutes of Health (NIH) and the Centers for Disease Control (CDC), they found that fewer than 10% of federally funded projects address natural disasters. This could have broad consequences, especially considering that natural disasters such as earthquakes, hurricanes or tornadoes can create an environment for infectious diseases to take hold in a population. More work needs to be done to integrate biosurveillance and biosecurity programs across different agencies and allocate resources in a way that reflects the priorities laid out by the administration.

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

January 13, 2017 at 10:00 am

Science Policy Around the Web – January 6, 2017

leave a comment »

By: Aaron Rising, PhD

Source: Flickr

Technology

Do You Want to Be a Superhero? Your Electronics Might Be Able to Get You a Little Closer to Being ‘Wolverine’!

In a recent communication in the journal Advanced Material, and summarized in The Christian Science Monitor, researchers have designed a conductive material that has quite a number of uncanny attributes. It consists of polarized, stretchable, polymer chains that are connected via ion-dipole interactions. This material stretches well, tolerating “extreme strains exceeding 5000%”, has high electrical conductivity, and is practically invisible.

What makes this material even more Incredible and Amazing is its ability to completely heal in 24 hours at room temperature. If cut with scissors, the ends will reconnect like new when placed in close proximity to one another. In talking with the Monitor, a co-author, Christopher Keplinger, described how we could go from metal robots like in Transformers to ones that look more like Data from Star Trek. “What you usually imagine is a metallic, clumsy piece of hardware that you would not want to have near yourself for any sort of collaboration or interaction – the mismatch in mechanics with the robot being hard and the human body being soft makes direct contact dangerous. Now imagine a new class of robots that are based on soft, elastic materials, being powered by stretchable electronic circuits and thus much more closely resemble the elegant design of biology.”

While these materials won’t make you invincible or heal like Wolverine they may make your cellphone or computer a little better at fighting crime or perhaps surviving being dropped. For a more global importance, this new material would allow for more suitable robotic human aids and caretakers. The use of robotic caretakers and companions has a rather large implication in both the health and the manufacturing sectors of our economy. (Joseph Dussault, The Christian Science Monitor)

Health

A New Human Organ

We all know the major organs in our body, the heart, brain, lungs, stomach, etc. In fact, for well over 100 years medicine has stated we have 78 organs in total. These organs have been discussed and described in modern textbooks such as the 40th edition of “Gray’s Anatomy” published in 2008. The editors of the prestigious textbook have revised the most recent version as a new organ called the mesentery has been found. It is located in and around the abdomen.

While discussed as early as 1885 by Dr. Frederick Treves and described as far back as 1508 by Leonardo da Vinci, the mesentery is a lining of the abdominal cavity that attaches to the intestine. This lining is what keeps the intestines in place in our gut. Treves described the mesentery ‘existed only sporadically, in disjointed ribbons, dispersed among the intestines and therefore did not meet the definition of an organ’. And as such was not and has not been classified as one of the 78 organs.

Two Irish scientists, however, disagreed and have claimed that the mesentery was not correctly categorized. According to Dr. J Calvin Coffey and Dr. D Peter O’Leary in The Lancet Gastroenterology & Hepatology, the mesentery can really be described as a single and continuous tissue and thus can be classified as an organ. First summarized in the Independent and subsequently in Discovery Magazine and The Washington Post, the new organ’s function isn’t entirely understood. Talking to the Independent Dr. Coffey said, “Now we have established anatomy and the structure. The next step is the function. If you understand the function you can identify abnormal function, and then you have disease. Put them all together and you have the field of mesenteric science.”

This new discovery opens up the possibility that some gastrointestinal ailments that have previously been associated with one organ, such as the stomach, may in fact be more aligned with the mesentery. Because the function of the mesentery is largely unknown, drug companies have a new target to test drugs and academic and government research groups have a complete new system to study. How to appropriately tackle the funding and attention this new organ and the emerging ‘mesenteric science’ will receive is just now being examined. (Tom Embury-Dennis, Independent)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

January 6, 2017 at 1:17 pm

Posted in Linkposts

Tagged with , ,