Science Policy For All

Because science policy affects everyone.

Containing Emerging and Re-emerging Infections Through Vaccination Strategies

leave a comment »

By: Arielle Glatman Zaretsky, PhD

Source: CDC [Public Domain], via Wikimedia Commons

           Throughout history, humans have sought to understand the human body and remedy ailments. Since the realization that disease can be caused by infection and the establishment of Koch’s postulates, designed to demonstrate that a specific microbe causes a disease, humans have sought to identify and “cure” diseases. However, while we have been successful as a species at developing treatments for numerous microbes, viruses, and even parasites, pure cures that prevent future reinfection have remained elusive. Indeed, the only human disease that has been eradicated in the modern era (smallpox) was eliminated through the successful development and application of preventative vaccines, not the implementation of any treatment strategy. Furthermore, the two next most likely candidates for eradication, dracunculiasis (guinea worm disease) and poliomyelitis (polio), are approaching this status through the use of preventative measures, via water filtration and vaccination, respectively. In fact, despite the recent pushback from a scientifically unfounded anti-vaxxers movement, the use of a standardized vaccination regimen has led to clear reductions in disease incidence of numerous childhood ailments in the Americas, including measles, mumps, rubella, and many others. Thus, although the development of antibiotics and other medical interventions have dramatically improved human health, vaccines remain the gold standard of preventative treatment for the potential of disease elimination. By Centers for Disease Control and Prevention [Public domain], via Wikimedia Commons

Recently, there have been numerous outbreaks of emerging or reemerging infectious diseases. From SARS to Ebola to Zika virus, these epidemics have led to significant morbidity and mortality, and have incited global panic. In the modern era of air travel and a global economy, disease can spread quickly across continents, making containment difficult. Additionally, the low incidence of these diseases means that few efforts are exerted to the development of treatments and interventions for them, and when these are attempted, the low incidence further complicates the implementation of clinical trials. For example, though Ebola has been a public health concern since the first outbreak in 1976, no successful Ebola treatment or vaccine existed until the most recent outbreak of 2014-2016. This outbreak resulted in the deaths of more than 11,000 people, spread across more than 4 countries, and motivated the development of several treatments and 2 vaccine candidates, which have now reached human trials. However, these treatments currently remain unlicensed and are still undergoing testing, and were not available at the start or even the height of the outbreak when they were most needed. Instead, diseases that occur primarily in low income populations in developing countries are understudied, for lack of financial incentive. Thus, these pathogens can persist at low levels in populations, particularly in developing countries, creating a high likelihood of eventual outbreak and potential for future epidemics.

This stream of newly emerging diseases and the re-emergence of previously untreatable diseases brings the question of how to address these outbreaks and prevent global pandemics to the forefront for public health policy makers and agencies tasked with controlling infectious disease spread. Indeed, many regulatory bodies have integrated accelerated approval policies that can be implemented in an outbreak to hasten the bench to bedside process. Although the tools to identify new pathogens rapidly during an outbreak have advanced tremendously, the pathway from identification to treatment or prevention remains complicated. Regulatory and bureaucratic delays compound the slow and complicated research processes, and the ability to conduct clinical trials can be hindered by rare exposures to these pathogens. Thus, the World Health Organization (WHO) has compiled a blueprint for the prevention of future epidemics, meant to inspire partnerships in the development of tools, techniques, medications and approaches to reduce the frequency and severity of these disease outbreaks. Through the documentation and public declaration of disease priorities and approaches to promote research and development in these disease areas, WHO has set up a new phase of epidemic prevention through proactive research and strategy.

Recently, this inspired the establishment of the Coalition for Epidemic Preparedness Innovations (CEPI) by a mixed group of public and private funding organizations, including the Bill and Melinda Gates Foundation, inspired by the suggestion that an Ebola vaccine could have prevented the recent outbreak if not for the lack of funding slowing research and development, to begin to create a pipeline for developing solutions to control and contain outbreaks, thereby preventing epidemics. Instead of focusing on developing treatments to ongoing outbreaks, the mission at CEPI is to identify likely candidates for future outbreaks based on known epidemic threats and to lower the barriers for effective vaccine development through assisting with initial dose and safety trials, and providing support through both the research and clinical trials, and the regulatory and industry aspects. If successful, this approach could lead to a stockpile of ready-made vaccines, which could easily be deployed to sites of an outbreak and administered to aid workers to reduce their morality and improve containment. What makes this coalition both unique and exciting is the commitment to orphan vaccines, so called for their lack of financial appeal to the pharmaceutical industry that normally determines the research and development priorities, and the prioritization of vaccine development over treatment or other prophylactic approaches. The advantage of a vaccination strategy is that it prevents disease through one simple treatment, with numerous precedents for adaptation of the vaccine to a form that is permissive of the potential temperature fluctuations and shipping difficulties likely to arise in developing regions. Furthermore, it aids in containment, by preventing infection, and can be quickly administered to large at risk populations.

Thus, while the recent outbreaks have incited fear, there is reason for hope. Indeed, the realization of these vaccination approaches and improved fast tracking of planning and regulatory processes could have long reaching advantages for endemic countries, as well as global health and epidemic prevention.

Have an interesting science policy link?  Share it in the comments!

Advertisements

Written by sciencepolicyforall

January 26, 2017 at 9:47 am

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: