Science Policy For All

Because science policy affects everyone.

Science Policy Around the Web – February 26, 2019

leave a comment »

By: Mary Weston, Ph.D.

Source: Wikimedia

A Century-Old Debate Over Science Patents Is Repeating Itself Today

In 1923, after the economic devastation of World War I, the Italian senator Francesco Ruffini wanted to bolster scientific research by giving scientists ownership of their discoveries. His scheme would have awarded scientists a patent of sorts on the laws of nature they found. Although he had reasonable scientific support and the backing of the newly formed League of Nations, ultimately scientists around the world strongly rejected the plan for various reasons. Recent proposed changes to scientific discovery patent law possess a striking similarity to these events and proposals nearly 100 years ago.

Ruffini, desiring to increase scientific research, argued that scientists should be able to receive “scientific property” for a discovery, similar to patents awarded for inventions. He cited the example of “Hertzian waves” (i.e. radio waves) as something that resulted in many valuable products. The proposal was a large deviation from the existing law, where patents could only be assigned for inventions – artificial things made by humans, like machines – but not for discoveries of the natural world. Ruffini “was clear that scientific property would not prevent all uses of a natural law. But only practical commercial applications”.

In 2017, the American Intellectual Property Law Association (AIPLA) and the American Bar Association’s Intellectual Property Section (ABA’s IP) both submitted proposals to change current laws (Amendment 35, Section 101) and allow for patents on scientific discoveries. Motivation for change stems from recent Supreme Court decisions regarding patents for medical techniques (use of the BRCA1/2 gene for detecting breast cancer and a blood diagnostic test to fine-tune autoimmune disease treatments). Currently legislators, specifically Senators Thom Tillis and Chris Coons, are revisiting these guidelines and roundtables were held in both January and February of this year. 

The demise of the previous 1920s proposal was due to details in implementation, very similar to the problems current proposals face today. These include how to:

  • attribute scientific property when there are many contributors to one discovery (i.e. who “discovered” electricity? Benjamin Franklin? George Ohm?). 
  • deal with unexpected liability, potentially requiring some sort of scientific property insurance scheme. 
  • deal with the scope of some scientific discoveries, possibly being so large that it leads to tremendous and costly amounts of ligation. 
  • write the patents with the specificity required without being too vague and/or speculative. 

Edward S. Rogers, a Chicago lawyer who assisted Ruffini with his proposals in the 1920s, ultimately warned against it in 1931, saying that while the plan was appealing, “the whole scheme seems impractical.”

If changes to the patent law are to occur, the same issues that prevented change nearly 100 years ago will need to be solved – a daunting and challenging task.

(Charles DuanSlate

Japanese Spacecraft Successfully Snags Sample of Asteroid Ryugu

The Hayabusa2, a Japanese asteroid-sampling spacecraft, just successfully retrieved surface pieces from Ryugu, a 3000-foot wide asteroid. To obtain the sample, the probe fired a 0.2 ounce tantalum “bullet” into the boulder-covered surface at close range, and then collected disturbed particles using a “sampling horn” located on the underside of the machine. 

The Japanese Space Agency (JAXA) launched the Haybusa2, Japanese for Peregrine Falcon, in December 2014. They told CNN that even reaching the asteroid, 180 million miles from earth, is the “equivalent of hitting a 2.4-inch target from 12,400 miles away”. Upon arrival, the probe circled the small asteroid for 1.5 years collecting data. Then, last September, two probes were successfully released to image and document the asteroid surface. 

The goal of this exploration journey is to better understand the early history and evolution of the solar system. Ryugu is a C-type asteroid, the category that ~75% of known asteroids falls into, and is thought to contain water and other organic materials. One theory suggests that much of earth’s water and organic compounds may have been delivered by asteroids and comets. This will be the first time scientists have visited and collected samples from this type of asteroid and evaluation of its composition may “clarify interactions between the building blocks of Earth and the evolution of its oceans and life,” JAXA described

JAXA is planning two additional sampling expeditions in the next couple of weeks. This second mission will collect additional surface material. The third will use a copper projectile to create a surface crater in order to obtain samples from beneath the asteroid’s surface, which has been weathered by deep-space radiation. The Haybusa2 will depart the asteroid in December 2019 and should arrive back to earth in December 2020.

(Mike WallSpace.com)

Have an interesting science policy link? Share it in the comments!

Advertisements

Written by sciencepolicyforall

March 1, 2019 at 12:58 pm

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: