Science Policy For All

Because science policy affects everyone.

Archive for the ‘Linkposts’ Category

Science Policy Around the Web – May 24, 2017

leave a comment »

By: Joel Adu-Brimpong, BS

Source: Flickr by Selena N. B. H. via Creative Commons

Scientific Publishing

Fake It Until You’re Caught?

The beauty of the scientific enterprise is that it is, eventually, self-correcting. Thus, occasionally, a scientific paper may be retracted from a journal based on new revelations or due to reports of ethical breaches. Tumor Biology, a peer-reviewed, open access journal disseminating experimental and clinical cancer research, however, seems to have set a record for the number of retracted papers at once. In a single notice, in April, Tumor Biology retracted 107 articles; yes, one hundred and seven!

Springer, the former publisher of Tumor Biology, reported that the retracted papers were due to a compromised peer review process. Like other journals, Tumor Biology allows the submission of preferred reviewer information (name and email address) when submitting a manuscript. In the case of the retracted papers, “the reviewers were either made up, or had the names of real scientists but false email addresses.” Unsurprisingly, the manuscripts sent to the fake reviewers consistently received positive reviews, bolstering the likelihood of publication.

Springer, of course, is not the first and only major publisher to uncover issues in its peer-review process leading to mass retractions. A 2016 paper reveals similar issues from other major publishers including SAGE, BioMed Central and Elsevier. These breaches are particularly worrisome as some of the retracted manuscripts date back to the beginning of the decade. This means that studies floating around in other journals may have built on knowledge reported by the retracted studies. As if this was not enough, Springer has also come under scrutiny for individuals listed on Tumor Biology’s editorial board, several of whom appear to have no association with the journal and/or in at least one case, have been deceased for several years.

These discoveries are particularly disturbing and are percolating at a time when biomedical research spending is increasingly being scrutinized. Richard Harris, the award-winning NPR journalist, in his recent book Rigor Mortis: How Sloppy Science Creates Worthless Cures, Crushes Hope, and Wastes Billions (2017), highlights major areas in biomedical research that produce wastes, such as studies that may incite researchers, and even whole fields, to follow a phantom lead. In the meantime, it does appear that journals are taking measures to ensure that these breaches are minimized, if not prevented entirely. (Hinnerk Feldwisch-Drentrup, ScienceInsider)

Research Funding

Fighting On All Fronts: Republican Senators Advocate for DOE’s Research Funding

Republican senators are, again, urging President Trump to rethink potential budget cuts to research programs; this time to the Department of Energy (DOE). On Thursday, May 18, 2017, six top senate republicans, including well-known congresspersons Lamar Alexander (R-TN), Lindsey Graham (R-SC) and Lisa Murkowski (R-AK), drafted a letter to the President reminding him of the importance of government-sponsored research. In the letter, they re-echo, “Government-sponsored research is one of the most important investments our country can make to encourage innovation, unleash our free enterprise system to create good-paying jobs, and ensure American competitiveness in a global economy.” They go on, “It’s hard to think of an important technological advancement since World War II that has not involved at least some form of government-sponsored research.”

If it seems like we’ve been down this road before, it’s because we have. Earlier this year, Rep. Tom Cole (R-OK), on the House Appropriations and Budget Committee, and his colleagues signaled disagreement with proposed budget cuts to the NIH and CDC in President Trump’s fiscal blueprint. The Republican congressman reiterated the importance of agencies like the NIH and CDC in conducting crucial biomedical research and leading public health efforts that protect Americans from diseases. The strong commitment to advancing biomedical research and the health of the American people led to an omnibus agreement that repudiated President Trumps proposed cuts, increasing NIH funding by $2 billion for the 2017 cycle.

The letter by Senator Alexander and colleagues was drafted following reports suggesting that the DOE’s Office of Energy Efficiency and Renewable Energy could face a reduction in funding of up to 70 percent for the 2018 fiscal cycle.  In a separate follow-up analysis, Democrats on the Joint Economic Committee reported on the growth and importance of clean energy jobs and its contribution to the economy. Cuts to the DOE’s research programs could have profound impact on not only millions of jobs but also America’s ability to stay competitive in the global economy as it shifts towards renewable energy and resources. (Geof Koss, ScienceInsider)

Have an interesting science policy link?  Share it in the comments!

Science Policy Around the Web – May 16, 2017

leave a comment »

By: Sarah L Hawes, PhD

Source: pixabay

Preventative Medicine

Fresh Foods a Day Keep Disease and Deficit Away

If you have recently shopped for health insurance, you likely encountered incentives for self-maintenance, such as discounted gym membership, or reimbursement for a jogging stroller. These incentives are motivated by the enormous ticket price of failing health. The CDC estimates that over $500 billion is spent annually on direct medical expenses to treat chronic diseases, which can be prevented or postponed through lifestyle practices – including heart disease, obesity, and diabetes.

The Geisinger health care system reports encouraging results from the first year of a lifestyle-modification program called Fresh Foods Pharmacy, piloted in central Pennsylvania. This program provides patients with Type 2 diabetes nutrition counselling, hands-on classes in healthy cooking techniques, and a weekly prescription for five days’ worth of fresh food – fillable for free at a hospital based “food pharmacy.” This means patients are not just advised to eat better; they are comprehensively enabled to eat better.

David Feinberg, president and CEO of Geisinger, reports that all 180 participants in the pilot group have made substantial improvements in their health, including reductions in blood pressure and body weight, and that many have seen a several-point reduction in a blood marker used to diagnose and monitor their disease, called A1C. A1C reduction means that blood sugar levels are being better controlled, which also means fewer costly diabetic complications for patients down the line. Feinberg calls the program “life changing,” adding that participants “won’t go blind; [they] won’t have kidney disease, amputations.”

Many Fresh Foods Pharmacy participants are low-income, so there is powerful financial incentive to ‘follow doctors’ orders’ and eat the free, healthy food. But what does supplying a person with nutritional counsel and weekly fresh foods cost?

Geisinger spends approximately $1,000 per year on each Fresh Foods Pharmacy patient. Meanwhile, a mere one-point drop in A1C levels saves Geisinger roughly $8,000 per year. Feinberg says that many participants trimmed about 3 points off their A1C level in the first year, saving roughly $24,000 on a $1,000 investment. “It’s a really good value” says Feinberg, who is already working to expand the program to additional sites.

Improved patient health and medical cost-cutting in the first year of this program are independently exciting. In addition, the value of engendering better patient health through comprehensive dietary support is very likely to extend beyond patient and provider. Patients who are enabled to engage in healthful food preparation will share a healthier diet and food-culture with their families, enhancing program benefits in as-yet unmeasured dimensions. (Allison Aubrey, NPR)

Research Funding

Climate Science Policy Lessons from Down Under

Pretend for a moment that everyone firmly believes that climate change is real, and is a real threat. Is this enough to safeguard basic climate science research? Recent events in Australia give us our answer – no.

Australia is the most active contributor to climate science in the Southern Hemisphere. As such, Australian researchers provide a truly international service. Public appreciation of this fact, together with public activism, recently saved funding for Australian climate science.

In 2015, Dr. Larry R. Marshall was appointed to lead Australia’s national scientific agency (CSIRO). Dr. Marshall planned to champion initiatives motivated by his faith in climate science. He wanted to develop technologies to respond to inescapable climate change, and to mitigate damage through reduced emissions. Paradoxically he proposed to fund these by laying off droves of basic climate researchers.

Dr. John A. Church was a climate scientist at CSIRO, having published highly regarded studies indicating accelerated sea level rise paralleling greenhouse gas emission. On catching wind of Marshall’s plan, Church reached out to his contacts in the media and wrote an open letter to Marshall in defense of basic science. Public marches, hearings, and protests from thousands of international scientists ensued.

Ultimately, the rally of public voices instigated by Dr. Church and others like him was effective. Far fewer layoffs occurred than were initially slated to occur. Dr. Church was among those let go by CSIRO, but was rapidly recruited by the University of New South Wales to continue his climate research.

Bear in mind that Dr. Marshall was no climate change denier. He showed great willingness to use scientific findings to guide policy, which is admirable. He addressed an Australian Senate committee saying that the climate “absolutely is changing,” and “we have to do something about it.” In a recent interview, he summarized his reasons for wanting to lay off scientists saying this: “Unfortunately, with a finite funding envelope, you’ve got to make choices where you fund.”

Australia’s example shows us that even in a political environment with great faith in science, reverence for basic research is a separate issue, and merits independent attention and protection. Staying abreast of science policy matters. And for those of us who believe there is no shortage of natural complexity, and no end to the fruitful pursuit of knowledge, it pays to speak out in defense of basic research. (Justin Gillis, The New York Times)


Have an interesting science policy link?  Share it in the comments!

Science Policy Around the Web – May 12, 2017

leave a comment »

By: Liu-Ya Tang, PhD

Source: pixabay


Basic Scholarship in Biosafety Is Critically Needed

While a significant amount of money funds primary research in life sciences, the portion allotted in biosafety assessment is almost neglected, which can be detrimental to biomedical research. In a recent paper in mSphere, an open-access journal published by the American Society for Microbiology (ASM), the authors reported the status of practicing biosafety in U.S. labs and pointed out the urgent need for funding in this field.

They identified human errors as the dominant component of laboratory biosafety risk, but there was limited data to support a quantitative analysis of human failure rates. Publicly available risk assessments were only focused on mechanical failure rates. They also found that historical biosafety incident data is not adequate, and incidents reporting systems are not sufficiently standardized. So the same mistakes could likely happen in multiple labs. In contrast, other industries, such as the power and transportation industries, have been investing heavily in maintaining safety records and have benefited from doing so. The authors cite an example from the airline industry to address the importance of incident reporting system. After a flight crash outside Washington’s Dulles airport in 1974, the Federal Aviation Administration (FAA) created a no-fault system of reporting aviation incidents and mistakes. FAA has maintained this system ever since, which has helped reduce accident rates by two-thirds compared to that in the early 1970s.

Even though funding for biosafety assessment is much less than that in other industries, the consequences of a potential infectious disease outbreak can be much bigger than any other accidents. Therefore, such funding is urgently needed for three aspects: “(i) development of a national incident reporting system, (ii) primary research programs focused on human reliability assessments, equipment failures, and decontamination efficiencies, and (iii) sharing of best practices.” Investing in biosafety and biorisk management will help enhance laboratory safety practices and improve work performance of our research enterprise in the long run. (Ryan Ritterson and Rocco Casagrande, mSphere)

Human Stem-Cell Research

Attitudes Towards Stem-Cell Research in Europe, Canada and the United States

Human embryonic stem-cell research has caused many political and public debates over moral concerns while providing benefits to human health. In science policy making, public opinion has great impact. To investigate factors that affect international public opinion towards stem-cell research, Allum N. and colleagues analyzed representative sample surveys in Europe and North America, fielded in 2005, when it was a highly contested issue.

The authors found that public attitudes towards stem-cell research has been affected by government decisions, especially in the U.S. During the Bush administration, federal funding only allowed the use of a small number of existing cell lines in stem-cell research. These limitations were removed by an Executive Order from President Barack Obama that expanded NIH support for human stem-cell research. In response to government guidance, public support for stem-cell research in the U.S. rose from 40 percent in 2002 to around 65 percent in 2010. About 65 percent of Europeans and Canadians supported human stem-cell research on the condition that it is tightly regulated. The other influential factor is religion. The authors showed that in all the regions examined, approval for stem-cell research decreased with increasing religious commitment. This pattern was more pronounced in the U.S. and Canada than in Europe. But interestingly, half of even the most religious public supported stem-cell research, which indicated that perhaps the benefits of stem-cell research are being more appreciated. Overall, the majority of people in the surveyed areas hold positive attitudes towards human stem-cell research. (Nick Allum et al, PLOS ONE)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

May 12, 2017 at 11:07 am

Science Policy Around the Web – May 9, 2017

leave a comment »

By: Emily Petrus, PhD

By Robert A. Rohde (Own work) [CC-BY-SA-3.0], via Wikimedia Commons


Please Pass the Crickets!

Most people know that eating beef is bad for the environment. A new study from the University of Edinburgh and Scotland’s rural college quantifies the impact human carnivores could have if we switched half of our current meat intake to insects such as crickets and mealworms. Cattle require huge swaths of pasture and produce enormous amounts of greenhouse gases such as methane. Methane is released during normal digestive processes, and methane and other greenhouse gases such as nitrous oxide are released from manure.

The idea of switching from a plate of steak to a bowl of mealworms may be too much for most Westerners, so what’s the human meat lover to do? Luckily, the study suggested that switching harmful beef for chicken or imitation meat (such as tofu) can yield large environmental benefits, because poultry and soy plants both require less land and produce less greenhouse gasses than cattle. The study also concluded that “meat in a dish”, or lab grown meat, was not more sustainable than chicken or eggs.

Although meat might not be replaced by insects any time soon for humans, we can still begin to incorporate insects into the farming discussion. Currently cattle raised for human consumption are fed diets of hay, soy, grain and other surprising items. These cattle need high levels of protein, which is one reason why mad cow disease became so prevalent – uneaten parts of cows were fed to other cows, which made them sick. Insects could help solve the protein gap for cattle, which was supported by a general survey of farmers, agricultural stakeholders and the public in Belgium.

Our eating practices affect the environment; moving towards a sustainable agricultural system is a commendable goal. Every person can decide for themselves how far they’re willing to go along the food chain to achieve a smaller carbon footprint. (ScienceDaily)

Vision Loss

Letting the Blind See Again

Vision loss is devastating – vision is the most relied upon source of sensory input for humans.  This can occur from an accident or genetic/physiological disorders. Retinitis pigmentosa causes a degeneration of the retina, and affects about 100,000 people in the US. Currently there is no cure, but clinical trials are exploring treatments to slow the process using gene therapy, dietary changes, or other drugs.

A new synthetic, soft tissue retina has been invented by a graduate student at Oxford University.  This artificial retina is biodegradable and uses synthetic but biological tissues to mimic the human retina.  The material composition is less likely to trigger an adverse reaction in the body and are less invasive than current retina transplants made of hard metal materials. Restrepo-Schild developed a bilayer of water droplets which respond to light with electrical impulses. The signals translate to cells at the back of the eye just like healthy retinal cells should. The new retina prototype has yet to be tested in animals to see if it translates well to humans.

Another way to restore vision is gaining traction: xenotransplants (transplants from animals to humans). Just last year a Chinese boy’s vision was restored after a corneal transplant from a pig. Pigs are good candidates for human transplantation because they are anatomically and physiologically similar, and they are ethically more desirable sources than non-human primates. Although pigs are not immunologically similar to humans, the eye transplants are unlikely to be rejected by the recipient because this part of the body is immune-privileged.

Restoring vision is an important and admirable task. Scientists and clinicians have multiple avenues to explore to help people regain their sight. (ScienceDaily)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

May 9, 2017 at 9:43 am

Science Policy Around the Web – May 5, 2017

leave a comment »

By: Thaddeus Davenport, PhD

Healthcare Policy

House Passes Bill to Repeal and Replace the Affordable Care Act

Thomas Kaplan and Robert Pear reported for the New York Times yesterday that Republicans in the US House of Representatives voted to pass a bill that would undo a number of central elements of the Affordable Care Act. Only six weeks ago, House Republicans failed to gather enough support to even vote on the first version of this bill, which was predicted to eliminate insurance coverage for twenty-four million Americans over the next decade. Since that time, Republican lawmakers have modified the so-called American Health Care Act (AHCA) bill to appeal to the more conservative members of the House – including provisions that would limit federal support of the Medicaid program, allow states to opt out of requiring that insurance cover services like maternity and emergency care, and also enable states to apply for waivers that would let insurance companies charge higher premiums for some individuals with pre-existing conditions. Like the first version, the bill that passed the House on Thursday does away with the ‘individual mandate’, which imposes a tax on people who can afford to buy insurance but do not – an aspect of the Affordable Care Act that was relatively unpopular but critical to ensure sustainability of the insurance markets. It also replaces government-subsidized insurance plans with tax credits between $2,000 and $4,000, depending on age. Other provisions in the bill would stop federal funding to Planned Parenthood for one year as well as eliminate taxes on high-income individuals, insurance companies, and pharmaceutical companies that helped to fund the Affordable Care Act. Yesterday, 217 Republicans voted in favor of the revised AHCA bill that will certainly  not provide healthcare insurance for everyone, without waiting for a non-partisan Congressional Budget Office analysis of the bill’s impact on the federal deficit or on the American people. These representatives’ haste reveals that they care little about how the AHCA will actually affect their constituents’ lives, and Democrats are counting on voters remembering this in upcoming elections. (Thomas Kaplan and Robert Pear, The New York Times)

Science Funding

NIH Funding Changes to Support More Early Career Investigators

The NIH budget has gradually declined over the last fourteen years, from $40 billion in 2003 to about $32 billion in 2017. Given that a proposed budget from the Trump administration for fiscal year 2018 would further cut funding for NIH by $5.8 billion, it is unlikely that funding for the NIH will increase dramatically in the coming years. To address these budget limitations, and in an attempt to do more with less, Jocelyn Kaiser reported for ScienceInsider this week that the National Institutes of Health will impose a cap on the number of grants awarded to investigators. In an open letter announcing the decision, NIH director, Francis Collins, writes that 40% of NIH funding is concentrated in the hands of 10% of NIH-funded investigators. He notes that this is not inherently problematic, except that many studies indicate that there are diminishing scientific returns on each additional dollar that is granted to any individual investigator. Under the new guidelines, investigators will be limited to a maximum of three R01-equivalent grants in order to support approximately 1,600 more grants to early career and mid-level researchers, who have been particularly affected by the declining NIH budget. While it is difficult to quantify scientific impact, the NIH decision is admirable for its intent to support diversity and efficiency in funding research. (Jocelyn Kaiser, ScienceInsider)

Have an interesting science policy link?  Share it in the comments!

Science Policy Around the Web – May 2, 2017

leave a comment »

By: Allison Dennis, BS

Public Health

You Can’t See What You Don’t Test For

The CDC relies on blood testing by pediatric health care providers to monitor lead exposure in children nationwide. However, many doctors may not be prompted to seek a test. According to a recent study, only half of estimated cases of elevated blood lead levels were reported to the CDC. From 1999 to 2010 an estimated 1.2 million cases of elevated lead blood level counts were predicted by state-by-state surveys conducted by the CDC. In contrast, only 607,000 cases were reported to the CDC by the 39 states that report elevated blood lead levels.

There is no safe threshold for lead exposure, however the CDC moved to revise the acceptable limit to 5ug/dL from 10ug/dL in 2012. Currently all doctors who treat children receiving Medicaid benefits are required to submit lead level tests for children at age 12 and 24 months or for those who have not received a test by the age of 7 years to meet formal eligibility. However, the number of tests performed annually falls short of those expected if doctors were following the rules. Each state maintains its own guidelines for when doctors should request testing and report to the CDC. And 12 states do not submit data to the CDC.

The greatest discrepancies between numbers predicted from survey data compared with state reported values were observed in Western states. When diagnosing lead exposure doctors may overlook environmental risk factors when treating patients in communities where lead has not been an issue historically. While public housing in Northeast cities like Baltimore have been recognized as a systemic source of lead exposure, the risk may not be so obvious in communities in California where buildings are assumed to be newer than 1978 when lead paint was banned nationally. (Susan Scutti, CNN)

Drug Policy

Access To Lethal Injection Drugs Challenges States To Get Creative

The FDA ruled on Thursday, April 20th that the Texas Department of Criminal Justice and the Arizona Department of Corrections have 90 days to destroy or return a batch of execution drugs imported from India. The Texas bound shipment seized by the FDA in July 2015 consisted of a thousand or more vials of sodium thiopental, which is used as the anesthetic in three-drug lethal injection protocols. While the FDA had abstained from enforcing a law preventing the import of sodium thiopental, which has no approved use in the United States, a US District Court permanently ordered the FDA to impose the ban.

Implementation of the import ban on sodium thiopental follows a long line of restricted access to lethal injection drugs. Political pressure on drug manufacturers has dramatically reduced the availability of products appropriate for use in lethal injection protocols. The last US manufacturer of sodium thiopental, Hospira, discontinued its production in 2011. In 2012, the European Commission blocked the export of drug for lethal injection to the United States. In May 2016, Pfizer announced it would end the use of its products in lethal injections, making it the final FDA approved manufacturer of potential drugs to do so. States have been responding by adapting protocols to meet drug availability or seeking third-party suppliers.

The modern use of lethal injections for corporate punishment were proposed in 1977 by the Oklahoma state medical examiner as being more humane and was first executed in Texas in 1982. While the practice is associated with drugs and medical professionals, it has never been subject to clinical trials or peer review. (Susan Scutti, CNN)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

May 2, 2017 at 10:08 am

Science Policy Around the Web – April 29, 2017

leave a comment »

By: Saurav Seshadri, PhD

digital forensics 5” by jon crel is licensed under CC BY 2.0

Forsensic Science

Now Who Will Push Ahead on Validating Forensic Science Disciplines?

The realities of forensic science remain far removed from the white-coated wizardry depicted on shows like CSI. Although forensic results often heavily influence criminal trials, there is a substantial gap between the perceived and true reliability of commonly used methods such as fingerprint and bitemark identification. The National Commission on Forensic Science (NCFS) was established in 2013 to help close this gap, by promoting rigorous, independent evaluation of forensic techniques, as well as communication between law enforcement agencies and academic scientists. The NCFS was supported jointly by the Department of Justice (DOJ) and National Institutes of Standards and Technology (NIST), and has published over forty documents reflecting the consensus of scientists, lawyers, law enforcement officers, and other stakeholders.

Recently confirmed Attorney General Jeff Sessions has decided not to renew the NCFS’ charter, which expired on April 23, 2017. Its work will ostensibly be taken over by a new entity, which will be developed by a DOJ Subcommittee on Forensics and spearheaded by an as-yet-unnamed, DOJ-appointed Senior Forensic Advisor. The DOJ is currently seeking input on how best to organize this initiative, but its actions already suggest an unwillingness to follow expert guidance, such as the original recommendations from the National Academy of Sciences that led to the creation of the NCFS. The recommendations include ‘[t]his new entity must be an independent federal agency…[i]t must not be part of a law enforcement agency’ and ‘…no existing or new division or unit within DOJ would be an appropriate location for a new entity governing the forensic science community’.

Despite this setback, some of the NCFS’ contributions, such as promoting acceptance of the need for licensing and accreditation, may have a lasting influence on the field. In the NCFS’ absence, NIST is expected to play a central role in coordinating the forensic science community. Support for these efforts will be critical to improving standards in forensic practice, and ultimately, to providing justice to the American public. (Suzanne Bell, The Conversation)

Infectious Disease

Ghana, Kenya and Malawi to Take Part in WHO Malaria Vaccine Pilot Program

While interventions such as insecticide-treated mosquito nets have dramatically reduced malaria-related deaths, almost half a million people still die annually from the disease, predominantly children in sub-Saharan Africa. Continuing the fight against malaria, the World Health Organization Regional Office for Africa (WHO/AFRO) has announced that a pilot program to test the world’s first malaria vaccine will begin in 2018. The vaccine (RTS,S or MosquirixTM) is the result of over $500 million in investment from GlaxoSmithKline and the Bill & Melinda Gates Foundation. It has shown promising results in Phase 3 trials, reducing rates of malaria by almost half in children treated at 5-17 months old. Following guidance from two independent advisory groups, the WHO will implement the vaccine in three countries that have high malarial burdens despite ongoing, large-scale anti-malaria efforts. The first stage of the program, which is being funded by several international health organizations in addition to WHO and GSK, will span 2018-2020, with final results expected in 2022.

RTS,S has followed an unconventional route to its current stage of development. It was approved by the European Medicines Agency (EMA) under Article 58, a mechanism that allows the EMA’s Committee for Medicinal Products for Human Use (CHMP) to collaborate with the WHO and international regulatory agencies to evaluate drugs intended for use in developing countries. However, in the first ten years after its inception in 2004, just seven drugs received positive opinions from CHMP through Article 58, and among these, the EMA has reported limited commercial success. This track record, combined with the emergence of more attractive incentive programs to develop drugs for tropical diseases (including a priority review voucher system launched by the FDA in 2007), has raised questions about Article 58’s effectiveness. A positive outcome for RTS,S could revitalize the program and lead to more innovative treatments for vulnerable populations worldwide. (WHO/AFRO press release)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

April 29, 2017 at 8:56 pm