Science Policy For All

Because science policy affects everyone.

Science Policy Around the Web – April 11, 2017

leave a comment »

By: Liz Spehalski, PhD

Source: pixabay

Antibiotic Resistance

KFC to Stop Using Antibiotics in Chicken

Kentucky Fried Chicken (KFC) has announced that by 2018, all of its “finger-lickin’ good” chicken will be raised without antibiotics, a decision that is being applauded by health experts. KFC, which has the second largest sales of a U.S. chicken chain after Chick-fil-A is giving its poultry suppliers the deadline to stop using antibiotics in their protein. It will join other large chicken serving fast food chains in fighting the rise of antibiotic resistant bacteria, following in the footsteps of McDonald’s, Chick-fil-A, and Subway. Corporate factory farms in the U.S. often treat their livestock and poultry with antibiotics to prevent disease and promote growth. Currently, livestock ventures utilize about 70% of the nation’s supply of the antibiotics that are given to patients when infections strike.

Antibiotics and other antimicrobial agents have been used successfully since the 1940s to treat people with infectious diseases, greatly reducing illness and death caused by microorganisms. However, the incidence of antibiotic- resistant bacteria is rising swiftly. According to the CDC, 2 million people become infected with antibiotic resistant bacteria each year, and at least 23,000 die because of these infections. Although resistance is caused simply by the wide usage of antibiotics across the globe, the fact remains that antibiotics are often incorrectly or over-prescribed.

This is a victory for consumer health groups who lobbied KFC to change its policies. “This announcement is a win for anybody who might someday depend on antibiotics to get well or even save their lives — i.e. everybody,” said Matthew Wellington, Program Director for one group’s antibiotics program. “It’s also a welcome step by KFC. The company’s newfound commitment on antibiotics should have lasting effects on the way these life-saving medicines are used in the chicken industry.” These advocates are currently lobbying state legislatures to pass laws that ban the routine use of antibiotics in livestock. (Lisa Baertlein, Business Insider)

Evolutionary Biology

Discovery of Giant Virus Fuels Debate over Fourth Domain of Life

Since their identification in the late 1800s as filterable infectious agents, viruses have long been characterized by their incredibly small size and their reliance on host cells for translation. These features have disqualified viruses as being classified as living organisms. However, with the discovery of the giant Mimivirus in 2003, evolutionary biologists are divided. Mimiviruses are larger than many microorganisms and can contain more than 2500 genes, including genes that implied their ancestors could live outside of a host cell. This discovery prompted some scientists to propose that viruses are descendants of a fourth domain of life alongside bacteria, eukaryotes, and archaea, while other researchers see no need for the fourth domain, asserting that viruses simply steal their genome from hosts.

A study published in Science on April 6 fuels this debate with the discovery of a virus in an Austrian sewage treatment plant that contains a genome with the most cell-like phenotype yet discovered. Klosneuvirus genomes contain genes for 20 amino acids as well as enzymes and other machinery used for protein synthesis. Analysis of these genomes suggests that the translation machinery seemed to have been picked up by one virus from a eukaryotic host cell, supporting the theory that viruses stole their genetic material and are thus not qualified as “life.” However, scientists have not been able to identify the host from which the stolen genes were taken, leaving the debate open since much of the Klosneuviruses’ translation genes do not match that of any other known organism. Further evolutionary work will need to be done to determine if viruses are indeed a fourth domain of life. (Sara Reardon, Nature News)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

April 11, 2017 at 9:24 am

Science Policy Around the Web – April 7, 2017

leave a comment »

By: Kseniya Golovnina, PhD

Cancer Research

RNA-Seq Technology for Oncotargets Discovery

One of the most significant discoveries in cancer research, using the “Big Data” approach with experimental validations, was made recently by Chinese and American scientists together with Splicingcodes.com. They described the first cancer predisposition, familially-inherited, fusion gene, KANSARL, specific to populations with European ancestry, by using advanced RNA-sequencing (RNA-seq) of cancer transcriptomes.

A fusion gene is a hybrid formed from two previously separate genes as a result of chromosomal rearrangements. Often, fusion genes are oncogenes. The first fusion gene abnormality was described in a human malignancy and was called the Philadelphia chromosome. In the early 1980s, scientists showed that a translocation between chromosomes 9 and 22 led to the formation of a fusion gene (BCR/ABL1), which produced a chimeric protein with the capacity to induce chronic myeloid leukemia. KANSARL is the most prevalent cancer gene discovered so far. Scientists systematically analyzed the RNA-seq data of many cancer types from different parts of the world, together with RNA-seq datasets of the 1000 Genome Project. KANSARL fusion transcripts were rarely detected in tumor samples of patients from Asia or Africa, but occurred specifically in 28.9% of the population of European origin.

Scientists from Cancer Genome Anatomy project at the National Cancer Institute (NCI), using sophisticated sequencing techniques, have identified 10,676 gene fusions among cancer-related chromosomal aberrations. Splicingcodes.com has identified over 1.1 million novel fusion transcripts, many of which are likely biomarkers of diseases. Fusion genes play an important role in diagnosis and monitoring of cancer treatment progress by measuring the disappearance of the fusion and, thereby, the disappearance of the tumor tissue. Currently, several clinical trials are aimed at treating fusion-positive patients with a range of targeted therapies, which will hopefully lead to novel therapy development and save patients’ lives. (Splicingcodes)

Biotechnology

Turning Mammalian Cells into Biocomputers to Treat Human Disease

Engineering cells by manipulating DNA and controlling their performance is a growing field of synthetic biology. Scientists have been working with bacterial cells for years to perform different controlled actions, for example, lighting up when oxygen levels drops. Bacterial cells, including Escherichia coli, have a simple genome structure and are relatively easy to manipulate. Using bacterial cells, it was possible also to join several genetic circuits within a single cell to carry out more complex actions.

After successful engineering in bacteria, researchers have aimed to create genetic circuitry to detect and treat human disease in mammalian cells. Most of the attempts have failed due to the complexity of the mammalian genome, until a group of biomedical engineers from Boston and Basel, Switzerland decided to upgrade their DNA “switches”. They used an ability of special enzymes, DNA recombinases, to selectively cut and stitch DNA. The new system in mammalian cells is called ‘Boolean logic and arithmetic through DNA excision’ (BLADE). BLADE founders built a wide variety of circuits (113), each designed to carry out a different logical operation with 96.5% success. This Boolean system has great potential for applications in cell and tissue engineering. One exciting possibility is engineering T-cells with genetic circuits that initiate a suicide response to kill tumors when they detect the presence of two or three “biomarkers” produced by cancer cells. (Robert F. Service, ScienceNews)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

April 7, 2017 at 9:22 am

Science Policy Around the Web – April 4, 2017

leave a comment »

By: James Taylor, PhD

Photo source: pixabay.com

Research Funding

NIH Research Grants Yield Economic Windfall

Assessing the social and economic benefits of basic research – research conducted with no clear medical or financial goal in mind – has is often tricky with the former being philosophical in nature whilst the later sometimes coming years later from unexpected angles. A classic example of this process is the polymerase chain reaction (PCR), which was built on basic research on DNA replication in bacteria from hot springs published years before its invention.  Critics of publicly funded research often take studies out of context in order to ridicule them, such as Sarah Palin’s infamous “fruit flies” comment.

A recent analysis of the economic effects of the National Institutes of Health (NIH) funding has shone light on the economic benefits of basic research. Danielle Li and colleagues found that although 8.4% of NIH grants between 1980 and 2007 led directly to patents, 30.8% produced a scientific article which was later cited in a commercial patent for a drug, device or other medical technology. This demonstrates an enormous but indirect benefit of publically funded research. Furthermore, when the studies were broken down into basic or applied (research with a stated medical or commercial goal) they found no difference between the two in terms of how likely they were to be cited in a patent. This should give funding bodies pause for thought, as it calls into question their growing emphasis on applied research.

Taking into account the indirect effects of NIH funded research, the authors estimate that every $1 in NIH funding returns $1.40 in drug sales. This report is timely with proposed budget cuts for science funding looming large in the horizon, and exposes such cuts as sheer economic folly. (Elie Dolgin, Nature News)

HIV/AIDS

HIV Infections are Spiking Among Young Gay Chinese

Recent surveys of HIV infections in China have shown a worrying spike in HIV infections among young gay and bisexual men, and have sparked the implementation of a broad 5-year plan to raise awareness and boost research into new treatments by the country’s ruling State Council. In the early 2000s, HIV infections were most prevalent amongst drug users in China, but there has been a steady decrease in prevalence amongst this group. The increase in HIV infections amongst men who have sex with men (MSM) has bucked this trend, and instead has been rising at an alarming rate. The cause of this increase remains unknown, with researchers at the National Health and Family Planning Commission in Beijing and China Medical University in Shenyang rather hopelessly suggesting that it was “possibly due to several unidentified and yet unaddressed risky sexual behaviors”.

China has previously mounted an effective response to the initial HIV epidemic by providing free antiretroviral to all HIV patients. This does little good, however, if you are afraid to admit you have HIV because it may out you as gay or bisexual. Despite recent improvements in LGBT rights and growing acceptance of LGBT people among the younger generation, being LGBT in China still carries with it significant stigma. This stigma, along with that of having HIV, may be causing young men to avoid seeking help out of fear. To reach out to gay men who may be at risk, the government and concerned nongovernmental organizations are working on novel outreach programs, such as working with dating apps popular with young gay and bisexual men to spread HIV awareness. The director of the Chinese Centre for Disease Control (China CDC), Wu Zunyou, has proposed increasing the availability of HIV self-test kits and pre-exposure prophylaxis medications, both of which would help those at risk whilst lessening the pressure from social stigma. (Kathleen McLaughlin, Science)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

April 4, 2017 at 10:00 am

The Trans-Pacific Partnership and its Impact on Pharmaceutical Affordability

leave a comment »

By: Shakira M. Nelson, PhD, MPH

        For many, the Trans-Pacific Partnership (TPP) was a point of great debate during the 2016 Presidential primaries and election. As a simplified explanation, the TPP is a free-trade agreement involving the United States, Canada, Australia, Japan, New Zealand, Mexico, Chile, Peru, Brunei, Malaysia, Singapore and Vietnam, intended to “level the trading playing field” through the elimination of tariffs and other laws that create trade barriers. In its final form, the TPP would impact up to one-third of world trade and 40% of the global gross domestic product. Many who debated the ramifications of the TPP did so in the context of foreign policy interests. Although aligned with foreign policy, a major part of the TPP deals with intellectual property protection, and pharmaceutical drug development. If implemented, the effects of the TPP could greatly diminish public access to affordable medicines, both domestically and internationally. Moreover, the stronghold the TPP places on intellectual property could limit the development and marketing of less expensive options.

Intellectual property can be divided into two categories: industrial property and copyright. Patents, trademarks, and industrial design fall under industrial property. Patent development is a large part of scientists’ work, seen as almost a necessity to incentivizing innovation. Many argue that, without the ability to patent inventions and significant findings, scientists would not be able to generate profits used to sustain research and development; within the pharmaceutical industry, patents are the proverbial bread-and-butter. When in place, patents create a stronghold around the release of new chemical drugs, which prevents competition by generic brands. The standard length of time of a patent for a chemical drug is 20 years, which starts from the time the drug is invented.

Many new medicines under development today fall under the category of ‘biologics’. As the name suggests, biologics are treatments made from biological sources, and are very different from chemical drugs. Created to treat a multitude of diseases, including Ebola and cancer, biological sources include vaccines, anti-toxins, proteins, and monoclonal antibodies. Given their structural complexity compared to traditional drugs, and use of recombinant DNA technology, biologics are more difficult, and costlier to make. Moreover, manufacturers have a greater burden in ensuring product consistency, quality, and purity over time. This is done through certifying that the manufacturing process remains the same over time. Because of this, it is estimated that the price to manufacture biologics cost on average more than 22 times the price of chemical drugs. Current laws state that generic biologic development, known as biosimilars, cannot be approved until 12 years after the branded product has been approved – this is known as an exclusivity period. This was enacted under the Biologics Price Competition and Innovation Act of 2009, by the Food & Drug Administration (FDA).

The challenge with current policies is establishing a period-of-time that balances the need for companies to generate profits and cash flows, which will incentive them to conduct more research and compensate them for the extensive manufacturing processes, with the need to provide greater access through launching generic drugs and biosimilars. The trouble with the proposed policies of the TPP agreement is that they seem to embolden the pharmaceutical companies by introducing changes that would prevent competition from generics and biosimilars for longer periods of time than the current basic terms. The implications of this are far-reaching, as it may lead to a significant increase in the current costs of pharmaceutical drugs and biologics, hindering the health of the patients who rely upon these treatments.

Critics of the current system of patent length and biologic exclusivity periods fear that rather than incentivizing innovation, companies are being rewarded through their ability to charge higher amounts for drugs without the fear of competition on the market. Health policy experts concur, identifying policies such as the Hatch-Waxman Act of 1984 in allowing for the creation of drug monopolies, and “going too far in compensating the pharmaceutical industry at the public’s expense”. A report released in 2009 by the Federal Trade Commission stated that biosimilar development was more difficult to achieve than traditional generic drugs. For example, development requires comparisons to the original biologic, to prove efficacy and equivalence. Biosimilars must share the same mechanism of action, with no clinically significant differences in terms of safety or potency for the approved condition of use. The steps necessary to achieve this are significant, and therefore imposing a 12-year exclusivity period on biologics may be unnecessary. US Congressmen have pushed to compromise, floating an amendment to the TPP that would lower the exclusivity period to 8 years. However, critics and patients who rely upon drug competition to lower market prices, have protested this amendment stating that costs of new drugs and biologics are too high, and 8 years is too long of a length of time to wait for affordable generics and biosimilars to come on to the market.

The impact of decreasing the length of time it takes for biosimilars to come onto the market can be seen with Neupogen, a leukemia drug that was first approved by the FDA in 1991. Delivered via injection, Neupogen costs patients $3,000 for 10 injections. With injections needed daily, this drug could carry a price tag of well over $100,000 per year. It wasn’t until recently, however, that the first biosimilar was approved on the US market. The biosimilar, Zarxio, was approved as a leukemia drug and is priced at more than $1000 less than Neupogen. This pricing has the potential to decrease the yearly costs of this drug from $100,000 with Neupogen to $55,000-$75,000. Further evidence of these financial savings was provided by the Rand Corporation, which predicted a savings of over $44 billion over 10 years with an increased approval of biosimilars, for patients who rely upon these specific cancer treatments.

Internationally, the policies of the TPP also have far reaching effects on the availability and costs of pharmaceuticals. The 12-year exclusivity period would be imposed upon the other countries involved in the TPP, where currently for some, such as Brunei, there is no current exclusivity protection. By imposing the 12-year period, global competition could become restricted. Additionally, the TPP proposes other key patent protections that play a bigger role on the international market. One protection, known as evergreening, allows drug companies to request patent extensions for new uses of old drugs. The immediate effect of this is an extension of monopolies on drug sales for minor reasons. The second protection allows pharmaceutical companies to request patent extensions if it takes “more than 5 years for an application to be granted or rejected.” Advocacy groups fear that the price of drugs would undermine the efforts of health initiatives, such as the Global Fund to Fight AIDS, Tuberculosis, and Malaria. These initiatives rely upon price competition to manage costs, with the availability of cheap generics helping drive costs down.

Although the current administration has ended the USA’s association with the Trans-Pacific Partnership, it is important to note that other countries may try to implement some of the policies, affecting the availability and affordability of drug treatments. To decrease this burden, the US could work to assist in negotiating exceptions for the poorer and smaller countries, to help them meet any challenges they may come up against. Within the US itself, it is important for policies, laws and any future trade agreements to be modified, with more of a focus on the affordability and regulation of drugs and biologics. Imposing price controls may offer a modest benefit, but may not be a long-term solution. A focus on lowering the patent length for new drugs and biologics can be an immediate step. Although the push back from pharmaceutical lobbyists will be substantial, alleviating the financial burden on families afflicted with cancer and diseases should be the focus.

Have an interesting science policy link?  Share it in the comments!

Science Policy Around the Web – March 18, 2017

leave a comment »

By: Joel Adu-Brimpong, BS

By James Tourtellotte, CBP Today [Public domain], via Wikimedia Commons

Public Health Policy

Missing the Brush Strokes while Gazing at the Bigger Picture

Last Wednesday, the House Committee on Education and the Workforce approved a little-advertised bill called HR 1313, or the genetic testing bill, with partisan-line voting (all 22 republicans in favor and all 17 democrats opposed). Overshadowed by the highly publicized, contentious debate over the Affordable Care Act repeal-and-replace efforts, this bill has remained largely undetected by the media as it traverses congress. This genetic testing bill would not only enable employers to require their employees to undergo genetic testing but also allow employers access to the genetic information, according to an article by STAT news. Employees refusing such requests could be at risk for thousands of dollars in penalties.

Current legislation, including the Americans with Disabilities Act (ADA) and the 2008 Genetic Information Nondiscrimination Act (GINA), prohibit such authority by employers, preventing requests by employers for “underwriting purposes”, which include “basing insurance deductibles, rebates, rewards, or other financial incentives on completing a health risk assessment or health screenings.” Additionally, genetic information provided to employers must be de-identified and aggregated to protect individual identities.

The HR 1313 bill would circumvent current legislation by nullifying these protections as long as the genetic test requests are part of “workplace wellness programs.” Employers purport that the ADA and GINA are “not consistent with the well-established and employee protective wellness program regulatory framework under HIPAA.” They argue that the House bill will aid in aligning the ADA and GINA with laws about workplace wellness programs. Conversely, experts including Jennifer Mathis, director of policy and legal advocacy at the Bazelon Center for Mental Health Law, and Nancy Cox, president of the American Society of Human Genetics, have come out against the bill. In an opposition letter to chairwoman Representative Virginia Foxx (R-N.C.), and ranking member, Robert Scott, of the U.S. House Committee on Education and the Workforce, critics of the bill state that “Workplace wellness programs are fully able to encourage healthy behaviors within the current legal framework: they need not collect and retain private genetic and medical information to be effective. Individuals ought not to be subject to steep financial pressures by their health plans or employers to disclose their own or their families’ genetic and medical information.” Nonetheless, with the possibility of such infringement, we remain lost in the bigger debate surrounding Affordable Care Act repeal-and-replace efforts with little regard for subtle components like HR 1313. (Sharon Begley, STAT news)

Infectious Diseases

Here We Go Again? The Re-emergence of Yet Again, Another Arbovirus

The recent resurgence of arboviruses, or ARthropod-BOrne viruses, in the Americas is concerning. While the 1990’s saw the reemergence of Dengue and the West Nile, Chikungunya resurfaced in 2013 and, recently, Zika in 2015. With South and Central America and the Caribbean still reeling from the reemergence of these viruses, another arbovirus appears to be making a comeback. Over the past weeks, a fifth arbovirus has been detected. Per a perspective piece co-authored by Dr. Anthony Fauci, infectious disease expert and director of the National Institute of Allergy and Infectious Diseases, there are on-going outbreaks of yellow fever in Brazil.

As of February 2017, there have been 234 reported cases and 80 confirmed deaths, with many other infections pending investigation. In context, the number of reported cases currently exceeds previously observed rates of infection for this time of the year. Regionally, the reported cases appear localized to rural areas in southeastern Brazil, chiefly Sao Paulo, Espirito Santo and Minas Gerais. According to the article, current cases appear to be “sylvatic” or jungle cases, with transmission occurring primarily between forest mosquitoes and non-human primates. Thus far, there is no evidence to suggest human-to-human transmission via the infamous Aedes aeqypti mosquito. Humans currently serve as “incidental hosts.” However, the propinquity of the affected areas to major urban centers in Brazil, where routine coverage of yellow fever vaccination is low, is alarming.

Experts posit that the likelihood of spread to the continental United States is low. However, they caution, “In an era of frequent international travel, any marked increase in domestic cases in Brazil raises the possibility of travel-related cases [anywhere].” A particularly poignant example in the article is the December 2015 large urban yellow fever outbreak in Angola and subsequent spread to the Congo. This led to an exhaustion of the world’s emergency supply of vaccines for epidemic response, “prompting health authorities to immunize inhabitants in some areas using one fifth of the standard does in order to extend vaccine supply.” Amidst these critical times of global health crises, threatened cuts to U.S. global health support will likely be catastrophic for developing nations. (Madison Park, CNN)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

March 18, 2017 at 9:31 pm

Science Policy Around the Web – March 14, 2017

leave a comment »

By: Liz Spehalski, PhD

Affordable Care Act

ACA Replacement Bill Released by House

Last Monday, House Republicans released their plan to repeal and replace former President Obama’s Patient Protection and Affordable Care Act (ACA), also known as Obamacare. The American Health Care Act (AHCA), a more conservative vision for the nation’s health care system, was created as a collaboration between the White House and the Senate Republicans. The Republican Party has been critical of the ACA because of the large role that it created for the federal government in health care, such as the need for the IRS to verify eligible people for financial help and federally mandating the public to have health insurance.

The AHCA will maintain some of the popular features of the ACA, such as allowing young adults to stay on their parent’s health care plans until the age of 26, banning lifetime coverage caps, and maintaining the ban on discrimination against people with pre-existing conditions. It also temporarily maintains the expansion of Medicaid to cover millions of low income Americans through January 1, 2020.

Instead of the individual mandate, a fine penalizing Americans for failing to have health insurance, the new bill would try to encourage people to sustain coverage by allowing insurers to impose a 30 % fine to those who have a gap between plans. The AHCA also changes the structure of tax credits given to those who want to buy insurance. Under the ACA, people who earn less than 200 percent of the poverty line get the highest subsidies. The Republican plan would instead give tax credits based mostly on age. The AHCA will also cut off federal funds to Planned Parenthood through Medicaid and other government programs for one year.

While Republicans did not offer any estimate of how much their plan would cost, or how many people would gain or lose insurance coverage, the Congressional Budget Office released its estimate yesterday, raising concerns. Two key House committees swiftly approved the bill, but uncertainty surrounds how this bill will fare in Congress, as some conservatives are concerned that it does not go far enough to remove government from health care, while others are concerned about their constituents losing coverage due to the loss of Medicaid expansion. No Democrats are expected to support the bill. (

Obesity

Fewer Overweight Americans Trying to Lose Weight

A study published in the Journal of the American Medical Association this week found that the percentage of Americans trying to lose weight is declining. In 1990, when researchers asked overweight Americans if they were trying to lose weight, 56% responded yes, while that number decreased to 49% in 2014. Researchers analyzed US government health surveys from 1988 through 2014 which involved in-person physical exams and health- related questions including whether the participants had tried to lose weight within the last year. The study included over 27,000 adults ages 20-59, and weight status was determined using body mass index (BMI).

The explanation behind this trend seems to be the shift in public perception over dieting and overweight people. “Socially accepted normal body weight is shifting toward heavier weight. As more people around us are getting heavier, we simply believe we are fine, and no need to do anything with it,” said lead author Dr. Jian Zhang, a public health researcher at Georgia Southern University. The authors of the study also discuss other possible reasons for this data, such as primary care physicians not discussing weight issues with their patients.

Though the decline of 7% may seem low, this number could represent up to seven million Americans, as more than two thirds of adults are considered to be overweight or obese, according to recent NIH statistics. Scientists say this is concerning because obesity increases the risk of a host of diseases such as heart disease, diabetes, cancer, liver disease, osteoarthritis, and stroke. However, “There’s a possible good news story in this,” says Janet Tomiyama, a psychologist at UCLA who studies eating behavior and weight stigma. “We’re not going to shame people into health,” Tomiyama says, “a lot of research shows that having a healthy body image is what leads to better health outcomes. Maybe people are taking the focus off the number on the scale, and going more towards focusing on their health.” The CDC’s current  obesity prevention efforts focus on policy and environmental strategies that target the affordability of healthy eating and active living, noting that fad diets can be unhealthy and tend to fail over the long term. (Allison Aubrey, NPR)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

March 14, 2017 at 10:00 am

How to Make a Valuable Postdoctoral Experience: Updating the Model

leave a comment »

By: Aparna Kishor, MD, PhD

       To an outside observer, the scientific enterprise in the US appears to be thriving. The 2016 budget of the National Institutes of Health (NIH) was $31.3 billion. Of this, about 80% was distributed to research projects performed extramurally, pointing to the fact that hundreds of thousands of researchers nationwide, established scientists as well as trainees, benefit from the funding. Although the numbers are somewhat murky, it is likely that over 50% of graduate students and postdoctoral researchers (postdocs) receive some federal funds.

A more granular view of the reality of modern scientific training reveals its true complexity. In The Postdoctoral Experience Revisited, a report on postdoctoral training in the US, the National Academies argue that there are serious issues in the way we train our young scientists today, including those having to do with recognition and compensation, mentorship, and career advising. Fundamentally, although the US has more postdocs than ever before, does this serve the individuals involved?

First some context. For those committed to a career in the biological sciences, the first stage of training is graduate study to acquire technical and field-specific skills, culminating in a PhD. Traditionally, the second is the postdoctoral stage, which provides additional technical experience and preparation for a future career, ideally culminating in a research position. In the US, approximately 65% of those with graduate degrees in the life sciences continue on to a postdoc which is the field with the highest rate of entry. The second highest is in the physical sciences, with only 50%. Although the quotidian experiences of the two may be similar, the graduate and postdoctoral stages are actually quite different, particularly since graduate training tends to have formal requirements and expectations while postdoctoral training, does not. This framework also has distinct benefits for the principle investigators (PIs). A major one is economic: junior scientists are a willing, and in the case of postdocs, highly trained, source of cheap labor (more on this below). On occasion, the work may be done at no cost to the PI if the trainee has funding from another source, although this is becoming proportionally less common.

When the postdoctoral arrangement was established in the early part of the 20th century, the training periods were typically 1-2 year stints in a lab to learn additional skills and consolidate connections in the field. After this, the young researcher would generally transition into an academic position. In the 1970’s, close to 55% of postdocs held tenure or tenure track faculty positions 6 years after completion of their graduate studies. Now, when a postdoc plans for his or her next career move, the situation is not so simple and this has aroused the concern of the National Academies. Partly, the difficulty is due to the number of available academic positions being outstripped by the number of postdocs in the pipeline. Data from 2006 show that only 33% of postdocs had faculty positions 6 years after graduate school and only half of those were tenured or tenure-track. The rest of the explanation lies in the fact that the landscape of the scientific enterprise has evolved.

Most obviously, the demographics of the postdoc community are markedly different from those in the early 20th century resulting in different needs for trainees. As of 2014, women were receiving close to 50% of all life science doctorates awarded in the US. Gender parity at graduation has not carried through to the faculty level (where only approximately 25% of tenured faculty are women). Among the many potential causes for this decline, one is that many women leave the academic track due to the challenges in balancing a career with raising a family. Nonetheless, there are more women at all levels in the sciences than before, indicating that retention may be increased by supporting women during the time that their children are young. Holders of temporary visas comprise another important population, but there are very few concrete data pertaining to them. They obtain close to 25% of all doctorates in the biological sciences, and 80% of those who have jobs after graduation stay in the US. With this, there is significant flux into the system at the postdoc level. As a result, upwards of a third of all biomedical postdocs in the US are foreign nationals primarily from India and China. Since these people have never been counted, the best way to help them meet their goals and the role they play in the US scientific arena are undefined.

Another important change is that postdoctoral training periods have lengthened from 1-2 years to around 4 years. For those who want the training, this timeline extension is believed to be a necessary sacrifice in order to gain entry into the competitive world of academia. Unsurprisingly, the percentage of PIs under 36 has fallen from 18% from 1980 to 3% in 2010. For established investigators, the longer training times are advantageous. Postdoc salaries at research institutions generally amount to less than the combined tuition-plus-stipend package offered to graduate students. After a few years, a postdoc may conduct research at a level equivalent to that of permanent scientific staff but at a fraction of the cost – postdocs pull in anywhere from $40,000 to $49,000 a year, while staff will have full benefits and a salary closer to $80,000 a year. Given this, the challenge is to make a prolonged training period valuable, feasible, and non-exploitative for all who choose it.

Finally, there is growing evidence that a postdoc may not be the right choice for everyone. Most junior scientists feel limited by the now-classic dichotomy between pursuing research in academia and industry. The reality is that many other career options exist, although some are a step or two removed from pure research. These are in areas like consulting, intellectual property, and science policy. Some jobs will provide entry-level incomes greater than a postdoc, and may even lead to career prospects that are more secure than that in research. Entry level salaries for some careers in industry begin at $70,000 and mean salaries in industry can be $40,000 more than that in academia, and the age at first non-academic job is lower than that for academics. Critically, for those wishing to optimize some of these other aspects of their professional advancement, a postdoc may be unnecessary.

Taken together, these developments indicate a need to change the culture surrounding the postdoc. The essence of the National Academies’ recommendation to improve the postdoctoral experience is that the entire scientific community must treat it as a valuable training opportunity instead of basic employment. To this end, the minimum postdoctoral salary should be increased, even beyond the current $47,484.  The improved economics for trainees will have a number of benefits: it will place more value on these individuals, limit the number of postdocs an investigator may hire, perhaps encourage more women to stay in research, and make positions more competitive, lessening their use as a default employment option. Postdocs should also be encouraged to receive individual funds as proof of independence. There is some evidence that postdocs on their own fellowships are more satisfied than those funded by their lab, although it seems likely that people more committed to a career as a researcher are the ones most likely to apply for fellowships. Additionally, those who receive early career grants are more likely to receive independent investigator grants and faculty appointments. Finally, there is an argument for more staff positions as a measure to keep postdoctoral opportunities as dedicated training experiences.

For now, it is important for each researcher to decide whether it is in his or her best interest to embark on the postdoctoral route. Fortunately, career advising is increasingly available to trainees at all levels and the NIH and other groups have issued mentorship guidelines for postdocs. Overall, the entire scientific community must assist in returning value to a postdoc and in meaningful career development for all trainees.

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

March 10, 2017 at 9:56 am