Science Policy For All

Because science policy affects everyone.

Posts Tagged ‘biopharmaceuticals

The Economic Impact of Biosimilars on Healthcare

leave a comment »

By: Devika Kapuria, MD

          Biologic drugs, also defined as large molecules, are an ever-increasing source of healthcare costs in the US. In contrast to small, chemically manufactured molecules, classic active substances that make up 90 percent of the drugs on the market today, biologics are therapeutic proteins that undergo production through biotechnological processes, some of which may require over 1000 steps. The average daily cost of a biologic in the US is $45 when compared with a chemical drug that costs only $2. Though expensive, their advent has significantly changed disease management and improved outcomes for patients with chronic diseases such as inflammatory bowel disease, rheumatoid arthritis and various forms of cancer. Between 2015-2016, biologics accounted for 20% of the global health market, and they are predicted to increase to almost 30% by 2020. Worldwide revenue from biologic drugs quadrupled from US $47 billion in 2002 to over US $200 billion in 2013.

The United States’ Food and Drug Administration (FDA) has defined a biosimilar as a biologic product that is highly similar to the reference product, notwithstanding minor differences in clinically-inactive components, and for which there are no clinically meaningful differences between the biologic product and the innovator product in terms of safety, purity and efficacy. For example, CT-P13 (Inflectra) is a biosimilar to infliximab (chimeric monoclonal antibody against TNF-α) that has recently obtained approval from the FDA for use of treatment of inflammatory bowel disease. CT-P13 has similar but slightly different pharmacokinetics and efficacy compared to infliximab. With many biologics going off patent, the biosimilar industry has expanded greatly. In the last two years alone, the FDA approved 4 biosimilar medications: Zarxio (filgrastim-sndz), Inflectra (infliximab-dyyb), Erelzi (etanercept-szzs) and Amjevita (adalimumab-atto).

Unlike generic versions of chemical drugs (small molecules that are significantly cheaper than their branded counterparts), the price difference between a biosimilar and the original biologic is not huge. This is due to several reasons. First, the development time and cost for biosimilars is much more than for generic medications. It takes 8-10 years and several hundred million dollars for the development of a biosimilar compared to around 5 years and $1-$5 million for the generic version of a small molecule drug. With only single entrants per category in the US, biosimilars are priced 15-20% lower than their brand name rivals, which, though cheaper, still amount to hundreds of thousands of dollars. By the end of 2016, the estimated global sales from biosimilars amounted to US $2.6 billion, and nearly $4 billion by 2019. Estimates for the cost savings of biosimilars for the US market are variable; the Congressional Budget Office estimated that the BPCI (Biologics Price Competition and Innovation) Act of 2009 would reduce expenditures on biologics by $25 billion by 2018. Another analysis from the Rand Corporation estimated that biosimilars would result in a $44.2 billion reduction in biologic spending between 2014 and 2024.

In the United States, a regulatory approval pathway for biosimilars was not established till the Patient Protection and Affordable Care Act of 2010. However, biosimilars have been used in Europe for over a decade, and this has led to the development of strategies for quicker adaptation, including changes in manufacturing, scaling up production and adapting to local healthcare policies. These changes have led to a competitive performance of biosimilars in the European market, with first generation biosimilars taking up between 50-80% of the market across 5 European countries, with an expected cost savings of $15 to$44 billion by 2020. One example that demonstrates a significant discount involves the marketing of Remsima, a biosimilar of Remicade (infliximab). In Norway, an aggressive approach towards marketing of Remsima was adopted with a 69% discount in comparison to the reference product. After two years, Remsima has garnered 92.9% of the market share in the country.

The shift to biosimilars may be challenging for both physicians and patients. While safety concerns related to biosimilars have been alleviated with post marketing studies from Europe, there still remains a significant lack of awareness about biosimilars amongst healthcare providers, especially about prescribing and administering them. Patient acceptance remains an important aspect as well, with several patients loyal to the reference brand who may not have the same level of confidence in the biosimilar. Also, like with generics, patients may believe that biosimilars are, in some way, inferior to the reference product. Increased reporting of post marketing studies and pharmacovigilance can play a role in alleviating some of these concerns.

In 2015, the FDA approved the first biosimilar in the US, after which, it has published a series of guidelines for biosimilar approval, under the BPCA act, including demonstrating biosimilarity and interchangeability with the reference product. This includes a total of 3 final guideline documents and 5 draft guidance documents. Starting in September 2017, the World Health Organization will accept applications for prequalification into their Essential Medication list for biosimilar versions of rituximab and trastuzumab, for the treatment of cancer. This program ensures that medications purchased by international agencies like the UNICEF meet standards for quality, safety and efficacy. Hopefully, this will increase competition in the biosimilar market to reduce price and increase access to medications in low-income countries.

Both human and economic factors need to be considered in this rapidly growing field. Increasing awareness among prescribers and patients about the safety and efficacy of biosimilars as well as improving regulatory aspects are essential for the widespread adaptation of biosimilars.

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

July 19, 2017 at 10:42 am

Growing Need for More Clinical Trials in Pediatrics

leave a comment »

By: Erin Turbitt, PhD

Source: Flickr by Claudia Seidensticker via Creative Commons

      There have been substantial advances in biomedical research in recent decades in the US, yet children have not benefited through improvements in health and well-being to the same degree as adults. An illustrative example is that many drugs used to treat children have not been approved for use by the Food and Drug Administration (FDA). Comparatively, many more drugs have been approved for use in adult populations. As a result, some drugs are prescribed to pediatric patients outside the specifications for which they have been approved for use, referred to as ‘off-label’ prescribing. For example, some drugs approved for Alzheimer’s Disease are used to treat Autism in children. The drug donepezil used to treat dementia in Alzheimer’s patients is used to improve sleep quality in children with Autism. Another example is the use of the pain medication paracetamol in premature infants in the absence of the knowledge on the effects among this population. While decisions about off-label prescribing are usually informed by scientific evidence and professional judgement, there may be associated harms. There is growing recognition that children are not ‘little adults’ and their developing brains and bodies may react differently to those of fully developed adults. While doses for children are often calculated by scaling from adult dosing after adjusting for body weight, the stage of development of the child also affects responses to drugs. Babies have difficulties breaking down drugs due to the immaturity of the kidneys and liver, whereas toddlers are able to more effectively breakdown drugs.

The FDA requires data about drug safety and efficacy in children before issuing approvals for the use of drugs in pediatric populations. The best way to produce this evidence is through clinical drug trials. Historically, the use of children in research has been ethically fraught, with some of the early examples from vaccine trials, such as the development of the smallpox vaccine in the 1790s. Edward Jenner, who developed the smallpox vaccine, has famously been reported to have tested the vaccine on several young children including his own without consent from the children’s families. Over the next few centuries, many researchers would test new treatments including drugs and surgical procedures on institutionalized children. It was not until the early 20th century that these practices were criticized and debate began over the ethical use of children in research. Today, in general, the ethical guidance for inclusion of children in research specifies that individuals unable to exercise informed consent (including minors) are permitted to participate in research providing informed consent is gained from their parent or legal guardian. In addition to a guardian’s informed consent, assent (‘affirmative agreement’) of the child is also required where appropriate. Furthermore, research protocols involving children must be subject to rigorous evaluation by Institutional Review Boards to allow researchers to conduct their research.

Contributing to the lack of evidence of the effects of drugs in children is that fewer clinical trials are conducted in children than adults. One study reports that from 2005-2010, there were 10x fewer trials registered in the US for children compared to trials registered for adults. Recognizing the need to increase the number of pediatric clinical trials, the FDA introduced incentives to encourage the study of interventions in pediatric populations: the Best Pharmaceuticals for Children Act (BPCA) and the Pediatric Research Equity Act (PREA). The BPCA delays approval of competing generic drugs by six months and encourages NIH to prioritize pediatric clinical trials for drugs that require further evidence in children. The PREA requires more companies to have pediatric-focused drugs assessed in children. Combined, these initiatives have resulted in benefits such as improving the labeling of over 600 drugs to include pediatric safety information, such as approved use and dosing information. Noteworthy examples include two asthma medications, four influenza vaccines, six medications for seizure disorders and two products for treating migraines. However, downsides to these incentives have also been reported. Pediatricians have voiced concern over the increasing cost of some these drugs developed specifically for children, which have involved minimal innovation. For example, approval of liquid formulations of a drug used to treat heart problems in children has resulted in this formulation costing 700 times more than the tablet equivalent.

A further aspect that must be considered when conducting pediatric clinical trials is the large dropout rates of participants, and difficulty recruiting adequate numbers of children (especially for trials including rare disease populations) sometimes leading to discontinuation of trials. A recent report indicates that 19% of trials were discontinued early from 2008-2010 with an estimated 8,369 children enrolled in these trials that were never completed. While some trials are discontinued for safety reasons or efficacy findings that suggest changes in standard of care, many (37%) are discontinued due to poor patient accrual. There is insufficient research on the factors influencing parental decision-making for entering their child to a clinical trial and research into this area may lead to improvements in patient recruitment for these trials. This research must include or be informed by members of the community, such as parents of children deciding whether to enroll their child in a clinical trial, and disease advocacy groups. The FDA has an initiative to support the inclusion of community members in the drug development process. Through the Patient-Focused Drug Development initiative, patient perspectives are sought of the benefit-risk assessment process. For example, patients are asked to comment on what worries them the most about their condition, what they would consider to be meaningful improvement, and how they would weigh potential benefits of treatments with common side-effects. This initiative involves public meetings held from 2013-2017 focused on over 20 disease areas. While the majority of the diseases selected more commonly affect adults than children, some child-specific disease areas are included. For example, on May 4, 2017 public meeting was held on Patient-Focused Drug Development for Autism. The meeting included discussions from a panel of caregivers about the significant health effects and daily impacts of autism and current approaches to treatment.

While it is encouraging that the number of pediatric trials are increasing, ultimately leading to improved treatments and outcomes for children, there remain many challenges ahead for pediatric drug research. Future research in this area must explore parental decision-making and experiences, which can inform of the motivations and risk tolerances of parents considering entering their child to a clinical trial and potentially improve trial recruitment rates. This research can also contribute to ensuring that clinical trials are ethically conducted; adequately balancing the need for more research with the potential for harms to pediatric research participants.

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

May 24, 2017 at 5:04 pm

The Trans-Pacific Partnership and its Impact on Pharmaceutical Affordability

leave a comment »

By: Shakira M. Nelson, PhD, MPH

        For many, the Trans-Pacific Partnership (TPP) was a point of great debate during the 2016 Presidential primaries and election. As a simplified explanation, the TPP is a free-trade agreement involving the United States, Canada, Australia, Japan, New Zealand, Mexico, Chile, Peru, Brunei, Malaysia, Singapore and Vietnam, intended to “level the trading playing field” through the elimination of tariffs and other laws that create trade barriers. In its final form, the TPP would impact up to one-third of world trade and 40% of the global gross domestic product. Many who debated the ramifications of the TPP did so in the context of foreign policy interests. Although aligned with foreign policy, a major part of the TPP deals with intellectual property protection, and pharmaceutical drug development. If implemented, the effects of the TPP could greatly diminish public access to affordable medicines, both domestically and internationally. Moreover, the stronghold the TPP places on intellectual property could limit the development and marketing of less expensive options.

Intellectual property can be divided into two categories: industrial property and copyright. Patents, trademarks, and industrial design fall under industrial property. Patent development is a large part of scientists’ work, seen as almost a necessity to incentivizing innovation. Many argue that, without the ability to patent inventions and significant findings, scientists would not be able to generate profits used to sustain research and development; within the pharmaceutical industry, patents are the proverbial bread-and-butter. When in place, patents create a stronghold around the release of new chemical drugs, which prevents competition by generic brands. The standard length of time of a patent for a chemical drug is 20 years, which starts from the time the drug is invented.

Many new medicines under development today fall under the category of ‘biologics’. As the name suggests, biologics are treatments made from biological sources, and are very different from chemical drugs. Created to treat a multitude of diseases, including Ebola and cancer, biological sources include vaccines, anti-toxins, proteins, and monoclonal antibodies. Given their structural complexity compared to traditional drugs, and use of recombinant DNA technology, biologics are more difficult, and costlier to make. Moreover, manufacturers have a greater burden in ensuring product consistency, quality, and purity over time. This is done through certifying that the manufacturing process remains the same over time. Because of this, it is estimated that the price to manufacture biologics cost on average more than 22 times the price of chemical drugs. Current laws state that generic biologic development, known as biosimilars, cannot be approved until 12 years after the branded product has been approved – this is known as an exclusivity period. This was enacted under the Biologics Price Competition and Innovation Act of 2009, by the Food & Drug Administration (FDA).

The challenge with current policies is establishing a period-of-time that balances the need for companies to generate profits and cash flows, which will incentive them to conduct more research and compensate them for the extensive manufacturing processes, with the need to provide greater access through launching generic drugs and biosimilars. The trouble with the proposed policies of the TPP agreement is that they seem to embolden the pharmaceutical companies by introducing changes that would prevent competition from generics and biosimilars for longer periods of time than the current basic terms. The implications of this are far-reaching, as it may lead to a significant increase in the current costs of pharmaceutical drugs and biologics, hindering the health of the patients who rely upon these treatments.

Critics of the current system of patent length and biologic exclusivity periods fear that rather than incentivizing innovation, companies are being rewarded through their ability to charge higher amounts for drugs without the fear of competition on the market. Health policy experts concur, identifying policies such as the Hatch-Waxman Act of 1984 in allowing for the creation of drug monopolies, and “going too far in compensating the pharmaceutical industry at the public’s expense”. A report released in 2009 by the Federal Trade Commission stated that biosimilar development was more difficult to achieve than traditional generic drugs. For example, development requires comparisons to the original biologic, to prove efficacy and equivalence. Biosimilars must share the same mechanism of action, with no clinically significant differences in terms of safety or potency for the approved condition of use. The steps necessary to achieve this are significant, and therefore imposing a 12-year exclusivity period on biologics may be unnecessary. US Congressmen have pushed to compromise, floating an amendment to the TPP that would lower the exclusivity period to 8 years. However, critics and patients who rely upon drug competition to lower market prices, have protested this amendment stating that costs of new drugs and biologics are too high, and 8 years is too long of a length of time to wait for affordable generics and biosimilars to come on to the market.

The impact of decreasing the length of time it takes for biosimilars to come onto the market can be seen with Neupogen, a leukemia drug that was first approved by the FDA in 1991. Delivered via injection, Neupogen costs patients $3,000 for 10 injections. With injections needed daily, this drug could carry a price tag of well over $100,000 per year. It wasn’t until recently, however, that the first biosimilar was approved on the US market. The biosimilar, Zarxio, was approved as a leukemia drug and is priced at more than $1000 less than Neupogen. This pricing has the potential to decrease the yearly costs of this drug from $100,000 with Neupogen to $55,000-$75,000. Further evidence of these financial savings was provided by the Rand Corporation, which predicted a savings of over $44 billion over 10 years with an increased approval of biosimilars, for patients who rely upon these specific cancer treatments.

Internationally, the policies of the TPP also have far reaching effects on the availability and costs of pharmaceuticals. The 12-year exclusivity period would be imposed upon the other countries involved in the TPP, where currently for some, such as Brunei, there is no current exclusivity protection. By imposing the 12-year period, global competition could become restricted. Additionally, the TPP proposes other key patent protections that play a bigger role on the international market. One protection, known as evergreening, allows drug companies to request patent extensions for new uses of old drugs. The immediate effect of this is an extension of monopolies on drug sales for minor reasons. The second protection allows pharmaceutical companies to request patent extensions if it takes “more than 5 years for an application to be granted or rejected.” Advocacy groups fear that the price of drugs would undermine the efforts of health initiatives, such as the Global Fund to Fight AIDS, Tuberculosis, and Malaria. These initiatives rely upon price competition to manage costs, with the availability of cheap generics helping drive costs down.

Although the current administration has ended the USA’s association with the Trans-Pacific Partnership, it is important to note that other countries may try to implement some of the policies, affecting the availability and affordability of drug treatments. To decrease this burden, the US could work to assist in negotiating exceptions for the poorer and smaller countries, to help them meet any challenges they may come up against. Within the US itself, it is important for policies, laws and any future trade agreements to be modified, with more of a focus on the affordability and regulation of drugs and biologics. Imposing price controls may offer a modest benefit, but may not be a long-term solution. A focus on lowering the patent length for new drugs and biologics can be an immediate step. Although the push back from pharmaceutical lobbyists will be substantial, alleviating the financial burden on families afflicted with cancer and diseases should be the focus.

Have an interesting science policy link?  Share it in the comments!

Synthetic Biology to Cure Diseases – Promises and Challenges

leave a comment »

By: Emmette Hutchinson, PhD

       Synthetic biology is an interdisciplinary field that utilizes an engineering approach to construct novel biological products, circuits and designer organisms. This field has the potential to revolutionize many aspects of society from chemical production to healthcare. Synthetic biology holds particular promise in the production of biological therapeutics or chemical compounds for the treatment of disease. Increased efficiency and stability of production can be especially beneficial when treating global diseases that are typically associated with poverty. Treatment for these conditions is typically funded by grants from large charitable foundations, sometimes leading to scarcity as funding recedes.

In 2015, 212 million cases of malaria were reported worldwide, predominantly among the poorest countries in the world. While major initiatives such as the President’s Malaria initiative and the Gates foundation focus on various aspects of combating the disease, such as the spread of the parasite and the eradication of the disease, respectively, cost-effective treatments for infections are still needed. The most efficacious treatments for malaria are artemisinin-based combination therapies (ACTs). The 2015 Nobel Prize in Medicine was awarded in part to Youyou Tu for her work demonstrating that artemisinin, an Artemisia annua (sweet wormwood) extract, was an effective anti-malarial treatment. Landmark research published in 2006 demonstrated synthetic production of artemisinic acid, a precursor to artemisin, in yeast. Prior to this study, the only source of artemisinin was tiny hairs found on the surface of the wormwood. The supply of artemisinin has previously been unstable, resulting in dramatic price fluctuations. These price spikes have resulted in both shortages and unattainable cost of treatment. The pharmaceutical giant Sanofi licensed the yeast strain with the hope of creating a more reliable source of artemisinin. In part, due to market forces pushing down the price of artemisinin (primarily a surge in world-wide Artemisia annua cultivation), Sanofi recently sold both its technology and production facilities to Huvepharma. Despite the potential of synthetic biology to disrupt the pharmaceutical industry, this is an example of how existing production methods can impede adoption of more efficient (and stable) synthetic approaches. An alternative to synthetic production of artemisinin in yeast, termed COSTREL (combinatorial supertransformation of transplastomic recipient lines), re-creates the enzymatic pathway necessary to produce artemisinin in tobacco. Although not as efficient as synthetic production of the chemical in yeast, this route offers a significant per-acre boost in artemisinin production over the native source and a potentially more open market to supply drug manufacturers.

Similar to malaria, snake bites predominantly affect impoverished regions of the world. This makes the use of life-saving anti-venoms particularly burdensome as they are both expensive and difficult to produce. The World Health Organization estimates that up to 2.5 million cases of envenoming occur each year, resulting in death, amputations and permanent disabilities. Antivenoms are typically produced using plasma from hyperimmune animals, an often expensive and time-consuming process. In some cases, the profit margins are considered too low to continue producing effective antivenoms such as FAV-Afrique, a polyvalent antivenom effective against 10 species of sub-Saharan snakes. Two recent approaches utilizing synthetic antibody fragments have shown promising effects for protection against specific snake venoms. In a screen for antibody fragments to snake venom, Prado and colleagues found two fragments that protected mice against muscle damage from Bothrops jararacussu and Bothrops brazili venom. Ramos and colleagues designed two synthetic DNA sequences encoding components of coral snake (Micrurus corallinus) venom. Serum obtained from animals immunized with these DNA sequences resulted in 60% survival of animals given a lethal dose of coral snake venom. This second approach eliminates the need for difficult-to-obtain venom when seeking to generate hyperimmune animals as anti-venom producers. It is possible that these or similar synthetic biology approaches could be utilized to produce FAV-Afrique or other polyvalent antivenoms in a faster, more cost-effective manner than hyperimmune animals.

While the possibility of artemisinic acid-producing yeast, high artemisinin-yielding tobacco, and more efficient sources of anti-venom are compelling, regulatory challenges and ethical dilemmas are abundant in the burgeoning field of synthetic biology. Both the US and the EU have recently held surveys and drafted opinions concerning the ethics and risks of synthetic biology. One potential issue with the use of synthetic biology approaches to industrial scale production of chemicals or recombinant proteins is the potential for uncontained spread of the recombinant organism or uncontrolled transfer of the modified genetic material. Another concern centers around the impact of synthetic biology on existing biological diversity. There are also concerns regarding the proliferation of synthetic biology capabilities and biosecurity. At the moment, the United States is in middle of an epidemic of opioid addiction. Synthesis of more complex chemicals in yeast also opens up issues with substance control. A research group has already demonstrated the ability to synthesize heroin in yeast, cheaply and effectively in much the same manner as one might brew beer, raising the possibility that new, designer substances of abuse could be produced in a similar manner. Approaches to the issue of biocontainment have varied, but as the control of synthetic transcriptional circuits becomes robust, more efficacious approaches to biocontainment can be developed. One recent approach to this problem implemented a two-part genetic version of a Dead Man’s Switch into E. coli, which will kill the synthetic organism when certain conditions are not met. As a standard operating procedure, this system would go a long way toward addressing containment of engineered organisms.

The engineering of novel biologicals, re-purposing of existing or development of new transcriptional circuits and entirely new organisms holds immense promise for all aspects of society. These technologies will likely impact the treatment of diseases typically associated with poverty initially, as the increased efficiency of production will lead to stability in price and decreased scarcity of therapeutics. Once concerns of containment and potential effects on existing ecosystems are sufficiently addressed, the broad application of these technologies becomes more reasonable. As the methodologies enabling the creation of designer organisms and novel biologicals improves, the market forces that impede adoption of more efficient synthetic sources of therapeutics may also have less of an impact.

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

February 23, 2017 at 4:33 pm

Science Policy Around the Web – December 20, 2016

leave a comment »

By: Liz Spehalski, PhD

Source: Flickr, under Creative Commons

In-Vitro Fertilization

UK Approves Mitochondrial Replacement Therapy Trials For Assisted Reproduction

The UK Human Fertilization and Embryology Authority (HFEA) has given the green light to allow mitochondrial replacement therapy, a type of assisted reproduction that can help families to avoid passing on genetic diseases. The method is controversial because the embryos contain genetic material from three people: two eggs and one sperm. The decision has been widely anticipated and comes after years of debate and a change in the country’s laws in 2015.

Mitochondria are responsible for generating more than 90% of the energy required by the body to sustain life and support organ function. When mitochondria fail, cells generate less and less energy, resulting in cell injury and cell death. The parts of the body that require the most energy; the heart, brain, muscles, and lungs, are the most affected by mitochondrial disease. Mitochondrial disease is difficult to diagnose due to its wide range of symptoms, which can include seizures, strokes, developmental delays, blindness, and heart problems.

Mitochondrial replacement therapy involves exchanging damaged mitochondria for heathy ones by transferring only the nuclear DNA from one egg or fertilized embryo from the mother into a donor egg, whose mitochondrial DNA is intact but nuclear DNA is removed. The technique has already been performed in Mexico and the Ukraine, and John Zhang, a physician at New Hope Fertility Center in New York City, has said that a baby boy conceived by the technique in Mexico seems healthy to this point. Recent work with eggs from affected women, however, found that some of the defective mitochondria from the mother’s egg was transferred to the embryo along with the DNA, raising questions about the effectiveness of the treatment. Currently, congressional action has blocked the FDA from allowing mitochondrial replacement procedures to be attempted in the United States.

On December 15, the HFEA announced that it would allow clinics to apply for licenses to conduct limited trials of the technique, with the goal of preventing mothers from passing down mutations in mitochondria. “Today’s historic decision means that parents at very high risk of having a child with a life-threatening mitochondrial disease may soon have the chance of a healthy, genetically related child. This is life-changing for those families,” said HFEA chair Sally Cheshire. An HFEA spokesperson projected that the UK’s first child with three people’s DNA could be conceived as early as March 2017. (Ewen Callaway, Nature News)


Commerce Secretary Announces New Biopharmaceutical Manufacturing Institute

Penny Pritzker, US Secretary of Commerce, announced on Friday a new institute to be added to the Manufacturing USA Institute; the National Institute for Innovation in Manufacturing Biopharmaceuticals (NIIMBL). The institute is the eleventh of Manufacturing USA Institute, the first funded by the Department of Commerce (DOC), and the first awarded under the Manufacturing USA “open topic” competition, in which industry was encouraged to propose institutes allocated to any manufacturing area that is not already being tackled.

While pharmaceutical manufacturing relies on chemistry, biopharmaceuticals are a drug product manufactured in or isolated from biological sources. They include vaccines, blood and blood components, stem cell and gene therapies, recombinant proteins, among other biologics. Many of these products are widely used for the treatment of an array of diseases such as cancer, autoimmune disorders and infectious diseases, generating billions of dollars worldwide.

The goals of this institute will be to keep biopharmaceutical manufacturing in the USA and to scale up the production of complex biological drugs. “In communities from coast to coast, the Manufacturing USA network is breaking down silos between the U.S. private sector and academia to take industry-relevant technologies from lab to market,” said Secretary Pritzker. “The institute announced today is a resource that will spread the risks and share the benefits across the biopharmaceutical industry of developing and gaining approval for innovative processes. The innovations created here will make it easier for industry to scale up production and provide the most ground-breaking new therapies to more patients sooner.”

NIIMBL received $70 million from the US Department of Commerce, and will be getting another $129 million from a public-private consortium of 150 companies, academic institutions, and nonprofits, as well as 25 states. The University of Delaware will be coordinating the institute’s partnership with the DOC. The hope is that NIIMBL will help to advance U.S. leadership in the biopharmaceutical industry, foster economic development, improve medical treatments, and ensure a qualified workforce by collaborating with educational institutions to develop new training programs matched to specific biopharma skill needs. (Press Release, Department of Commerce)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

December 20, 2016 at 9:07 am