Science Policy For All

Because science policy affects everyone.

Posts Tagged ‘CRISPR-Cas9

Science Policy Around the Web October 29th, 2019

leave a comment »

By Allison Cross PhD

Image by Gerd Altmann from Pixabay 

Super-precise new CRISPR tool could tackle a plethora of genetic diseases

Since the first adaption of CRISPR-Cas9 for gene editing in eukaryotic cells in 2013, the hopes of using the technique to cure genetic diseases have been high.  Despite the ability of current CRISPR–Cas9 gene-editing tools to edit the human genome, successful edits are often accompanied by unintended and unpredictable errors elsewhere in the genome. However, a new method of editing, published this week in Nature, shows potential for greater control over genome editing.   

This new method of genome editing, referred to as prime editing, still uses Cas9 to recognize specific DNA sequencing in the genome.  However, instead of producing double stranded breaks, a modified Cas9 enzyme is utilized to cut only one strand of the DNA.  The cut strand of DNA (called nicked DNA) is then repaired utilizing a prime editing guide RNA, known as a pegRNA.  

Prime editing offers several advantages over a similar previously developed editing technique, known as base editing.  Base editing, like prime editing, does not result in double stranded DNA breaks; instead it allows researchers to make specific substitutions to the bases that make up DNA (adenine, guanine, thymine, cytosine). However, it only allows for certain subsets of single base changes to be made (C->T, G->A, A->G, and T->C).   Prime editing is more versatile, allowing for all 12 possible base-to-base changes and capable of making multi-base changes.  There is, however, a limitation to how large the changes can be using the prime editing technique.  If large insertions or deletions are desired, traditional CRISPR-Cas9 tools remain necessary.

Researchers are still evaluating how prime editing works in a variety of cells and organisms, but the initial studies published this week show promise for more versatile and precise gene editing with fewer unwanted byproducts. 

 (Heidi Ledford, Nature) 

U.S. Travel Ban Disrupts the World’s Largest Brain Science Meeting

The travel ban implemented by the Trump administration restricts U.S. travel from 7 nations; Iran, Librya, Somalia, Syria, Yemen, North Korea and Venezuela.  The ban has been a very controversial issue with wide ranging implications. After its implementation, many in the scientific community feared the ban would hurt the community by resulting in lost potential collaborators, trainees, and recruits.  

This year’s Society for Neuroscience meeting drew more than 25,000 brain scientists from around the world to Chicago this week, however, some scientists were unable to attend due to visa issues. Sepiedeh Keshavarzi, a current Australian citizen who holds an Iranian passport, was invited to give an oral presentation during the year’s meeting. Instead of attending the meeting in person, Keshavarzi instead sent a prerecorded PowerPoint presentation to the meeting after her request for a Visa to the U.S. was denied.  

With Visa problems becoming increasing common, the Society to Neuroscience created a special program aimed at helping scientists with Visa issues present their work at this year’s meeting. The program, called Science Knows No Borders, did help some scientists, like Keshavarzi, present their work; however, fewer than a dozen scientists participated in the program. 

(Jon Hamilton, NPR)

Written by sciencepolicyforall

October 29, 2019 at 2:47 pm

Science Policy Around the Web – March 15, 2019

leave a comment »

By: Allison Dennis. B.S.

Image by Gabriela Sanda from Pixabay 

A Genetic Mutation Might Explain Why Birth Control Can Fail

Hormonal contraceptives have been increasingly embraced as an effective tool for family planning since their approval for contraceptive use by the FDA in 1960Fewer than 1 in 100women will get pregnant in a year when using the contraceptive pill correctly, but the cause of the few unintended pregnancies remaines a mystery. 

To ask if there was a genetic reason why hormonal contraceptives might be ineffective at preventing pregnancy for some women, researchers measured the amount of etonogestrel in the blood of women using the etonogestrel contraceptive implant (Nexplanon). While the findings of this small study were not significant, the researchers did observe that women carrying a mutation in their CYP3A7gene had lower concentrations of etonogestrel in their blood. Of the women with mutation, 28% had etonogestrel levels lower than what is needed to suppress ovulation. Only 9% of women without the mutation had critically low levels. The CYP3A7 gene produces a fetal enzyme, responsible for breaking down excessive steroid hormones in the developing fetus. Usually the gene is turned off in adulthood, but genetic mutations can result in it staying active throughout one’s life, possibly leading women with these mutations to break down the etonogestrel being supplied by the Nexplanon implant. 

To begin capturing the ability of particular genetic variants to predict which patients will or will not respond to particular medication, experience adverse events, or need a particular dose, the FDA maintains a list of drugs whose use may be complicated by particular Pharmacogenomic Biomarkers. Only one of the 232 on the list is a hormonal contraceptive, listed because women carrying a particular mutation may respond negatively to one of its inactive ingredients, not because it is less effective for these women. The etonogestrel study is the first to associate particular genetic variants with birth control performance. As researchers delve into the complicated intersection between genetic differences and drug responses their discoveries promise to lead to better outcomes for all those seeking effective family planning options. 

(Megan Molteni, Wired Magazine)

New call to ban gene-edited babies divides biologists

The birth of genetically modified children is now possible thanks to technologies like the genome-editing CRISPR-Cas9which can introduce heritable changes in germline cells, including human sperm, eggs, and embryos. In November 2018, He Jiankui’s demonstrated the technique by orchestrating the birth of two babies whose genomes were altered between in vitro fertilization and implantation. He Jiankui’s experiment may have shown editing the human germline was possible, but it did not address the safety or efficacy of the genetic changes for his two inaugural patients. While many view He Jiankui’s experiment as prematureand possibly illegal, it has undeniably brought discussions of the appropriate use of the technology to a forefront. 

On March 13th, a group of prominent scientists and international specialists published a call for a global moratorium on clinically making genetically modified children. The first step, as they see it should be setting a deadline before which all clinical use of germline editing will be put on hold. They suggest five years from now. During this time, they propose that nations engage in “discussions about the technical, scientific, medical, societal, ethical, and moral issues that must be considered.” Technical issues arise from the need to demonstrate germline editing as safe and efficacious. Scientifically, the long-term effects of specific genetic enhancements or corrections must be understood. Many potential changes imagined to be possible may not be medically necessary. As for societal, ethical and moral considerations, the authors stress the importance of carefully weighing “the appropriateness of altering a fundamental aspect of humanity.” The commentary acknowledges that not all nations will be ready to proceed at the same rate but suggests that any nation that does decide to proceed only do so after consulting broadly with other countries and allowing their public to reach societal consensus that the next step is appropriate. 

The motivation of the authors’ is clear. “We’re trying to force the spotlight on what comes next,” said co-author Eric Lander, President of the Broad Institute. To what extent international consensus can be built surrounding what the National Institutes of Health calls“a crucial moment in the history of science: a new technology offers the potential to rewrite the script of human life”  remains to be seen.

(Jon Cohen, Science Magazine)

Have an interesting science policy link? Share it in the comments!

Written by sciencepolicyforall

March 15, 2019 at 4:00 pm

Science Policy Around the Web – August 4, 2017

leave a comment »

By: Emily Petrus, PhD

20170804_Linkpost_1

source: pixabay

CTE Research

National Football League Backs out of Funding Brain Research

A new study released this week added more fuel to the fire surrounding the health problems associated with playing contact sports, most notably American football. The study found signs of chronic traumatic encephalopathy (CTE) in the brains of 110 out of 111 former National Football League (NFL) players. Repetitive head trauma is thought to cause CTE, which can result in behavioral and mood disorders and cognitive impairment. Football players donated their brains to the Concussion Legacy Foundation so that scientists could evaluate the impact of playing contact sports on their brains. Currently CTE is only diagnosed post-mortem, so developing effective diagnoses and treatments for living patients would benefit NFL players, soldiers and others at risk of head trauma.

Advancing the science to benefit these groups in theory should serve in the NFL’s interest, however the initial damaging reports demonstrating the dangers their players face didn’t sit well. In 2012 the NFL pledged $30 million to the National Institutes of Health (NIH) for brain research, however the partnership is set to expire this year with about half the money unspent. A 2016 New York Times article revealed some unsettling interactions between the NFL and NIH, when a congressional study found that the NFL tried to direct their funding away from research performed by certain scientists. The NIH was set to award a $17 million grant to Dr. Robert Stern at Boston University to study the link between repeated concussions and CTE, however representatives from the NFL attempted to discredit Dr. Stern’s work. The NIH chose to fund Dr. Stern’s highly ranked proposal, and reserve the NFL’s money for future research. It seems now that future research funded by the NFL and distributed by the NIH is unlikely to happen.

Eliminating conflicts of interest is important for research to remain unbiased and evidence based. Concussion research conducted by the NFL or clinical trials performed by pharmaceutical companies can produce bias results. There is a need for the NIH and FDA to act as fair and unbiased grant reviewers and funding distributors. Even among players at the NFL there is a spectrum of how people feel about the dangers of playing football, best exemplified by the following quotes:

“We live and breathe it and this is what we’re so passionate about. Literally, I would — if I had a perfect place to die, I would die on the field.” – Jamal Adams Jet’s Rookie

“I hope All these young cats that are willing to die for the game of football find a higher purpose in life. Look football is great but I ain’t dying for this sh*t. Lol.” – Martellus Bennett Green Bay Packers Tight End (Twitter)

(Laurel Wamsley, NPR)

 

Human Genetic Engineering

No Super-Babies Yet

The United States has had a long history with avoiding research using stem cells. Since in vitro fertilization (IVF) became possible in the 1970’s we have been debating the ethics of using human stem cells and embryos for research. During George Bush’s tenure as president, stem cell research was explicitly un-fundable with public tax dollars (i.e. from NIH). As scientists found new ways to create stem cells without fetal tissue and Barack Obama’s presidency began, the US finally embraced stem cell research. However, researchers are still not permitted to use public funding to create and destroy human embryos – they can only use already fertilized embryos donated by patients from IVF clinics. If the research is privately funded, then researchers can both make and dispose of human embryos.

This little history lesson sets the stage for a discovery made in America and published this week in Nature, where researchers in Oregon (with collaborators in South Korea and China) were able to use gene editing to remove a heart defect-causing gene in human embryos. This technique is called CRISPR-Cas9, which uses prokaryotic (bacterial) DNA to target desired genes to be deleted or replaced and has already been used to edit embryos (human, other vertebrates, invertebrates and plants) with mixed results. There are reports of both off-target mutations (editing occurring in the wrong place) or mosaic embryos, meaning some cells are edited while others are not. What sets this new paper apart from the pack is the researchers inserted the CRISPR-Cas9 complex at the same time as the sperm, thus the editing began at fertilization. The inserted Cas9 protein was degraded too quickly to be effective at producing off-target mutations, and since the editing happened at conception only one out of 58 embryos was a mosaic. In contrast, waiting as little as 18 hours after fertilization to edit the embryo resulted in 13 out of 54 mosaic embryos.

For those worried about the production of designer babies, this study alleviates some of these concerns as well. Although researchers in this study provided a synthetic DNA template for the CRISPR-Cas9 system to rewrite the faulty gene, the cells ended up using the healthy mother’s DNA strands. This means scientists aren’t yet able to create babies to specifications, just strongly favor the existing but healthier parental gene to be passed on to the offspring. There are obvious ethics issues involved in creating human embryos and destroying them in the name of scientific discovery. However, getting rid of fatal diseases by gene editing could be music to the ears of parents who long to have children of their own but don’t want to risk having children affected with lethal conditions. The National Academies of Sciences, Engineering and Medicine have launched the Human Gene-Editing Initiative to tangle with these issues as they arrive to policy forums.

(Heidi Ledford, Nature News)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

August 4, 2017 at 3:31 pm

Science Policy Around the Web – February 17, 2017

leave a comment »

By: Thaddeus Davenport, PhD

Source: pixabay

CRISPR

Decision in the CRISPR-Cas9 Patent Dispute

This week, Heidi Wedford from Nature News reported that the United States Patent and Trademark Office (USPTO) made a decision on the disputed patents for the gene editing technology known as CRISPR-Cas9 in favor of the Broad Institute of MIT and Harvard. The CRISPR-Cas9 system has been widely publicized, and this publicity is arguably not out of proportion with the potential of this technology to simplify and accelerate the manipulation of DNA of both microbial (prokaryotic) and higher order (eukaryotic) cells for research and therapy. A simplified, programmable version of CRISPR-Cas9 for use in gene editing was initially described by Charpentier and Doudna, and it was rapidly translated for use in eukaryotic cells by Zhang and colleagues at the Broad Institute in parallel with Doudna, Charpentier, and others.

The USPTO decision follows a dramatic and ongoing dispute over whether the patent application submitted by the University of California on behalf of Doudna and Charpentier – which was submitted before that of the Broad Institute, and described the technology in broad terms as a method of cutting desired DNA sequences – was sufficient to protect the CRISPR-Cas9 intellectual property when the Broad Institute later filed a fast-tracked patent application describing the use of CRISPR-Cas9 for use in eukaryotic cells. Because the Broad Institute’s application was expedited, it was approved before the University of California’s application. In January of 2016, the University of California filed for an ‘interference’ proceeding, with the goal of demonstrating to the USPTO that Doudna and colleagues were the first to invent CRISPR-Cas9, and that the patent application from the Broad Institute was an ‘ordinary’ extension of the technology described in the University of California application.

On February 15th of this year, the USPTO ruled that the technology described in the Broad Institute’s application was distinct from that of the University of California’s. The importance of this decision is that the patents granted to the Broad Institute for the use of CRISPR-Cas9 in mammalian cells will be upheld for now. It also creates some complexity for companies seeking to license CRISPR-Cas9 technology. Because of the overlapping content of the CRISPR-Cas9 patents held by the University of California and the Broad Institute, it is possible that companies may need to license the technology from both institutions. The University of California may still appeal the USPTO’s decision, but this is a significant victory for the Broad Institute for the time being. For many scientists, this dispute is a dramatic introduction to the inner workings of the patent application process. We would do well to familiarize ourselves with this system and ensure that it works effectively to accurately reward the discoveries of our fellow scientists and to facilitate the transfer of technology to those who need it most, without imposing undue economic burden on companies and consumers. (Heidi Wedford, Nature News)

Scientific Publishing

Open Access to Gates Foundation Funded Research

Also this week, Dalmeet Singh Chawla reported for ScienceInsider that the Bill and Melinda Gates Foundation had reached an agreement with the American Association for the Advancement of Science (AAAS) that will allow researchers funded by the Gates Foundation to publish their research in the AAAS journals Science, Science Translational Medicine, Science Signaling, Science Immunology, and Science Robotics. This agreement follows an announcement in January in which the Gates Foundation decided that research funded by the foundation would no longer be allowed to be published in subscription journals including Nature, Science, and New England Journal of Medicine, among others, because these journals do not meet the open access requirements stipulated by the new Gates open-access policies. The new Gates Foundation policy requires its grant recipients to publish in free, open-access journals and to make data freely available immediately after publication for both commercial and non-commercial uses. A similar policy is being considered by the nascent Chan Zuckerberg Initiative.

In the agreement with AAAS, the Gates Foundation will pay the association $100,000 in order to make Gates-funded published content immediately freely available online. Convincing a journal as prominent as Science to make some of its content open-access is a step in the right direction, but it is perhaps more important as a symbol of a changing attitude toward publishing companies. Michael Eisen, co-founder of the Public Library of Science (PLoS) open-access journals, was interviewed for the ScienceInsider article and noted, “[t]he future is with immediate publication and post-publication peer review, and the sooner we get there the better.” This sentiment seems to be increasingly shared by researchers frustrated with the hegemony of the top-tier journals, their power over researchers’ careers, and the constraints that subscription-based journals impose on the spread of new information. Funding agencies including the Gates Foundation, Howard Hughes Medical Institute, and the National Institutes of Health are in a unique position to be able to dictate where the research they fund may be published. A collective decision by these agencies to push the publishing market towards an improved distribution of knowledge – through open-access publishing and post-publication peer review – and away from the historical and totally imagined importance of validation through high-tier journal publication would enrich the scientific ecosystem and accelerate innovation. In this regard, the efforts by the Gates Foundation are laudable and should be extended further. (Dalmeet Singh Chawla, ScienceInsider)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

February 17, 2017 at 12:44 pm

Science Policy Around the Web – August 9, 2016

leave a comment »

By: Thaddeus Davenport, Ph.D.

Infectious Diseases

Local Transmission of Zika Virus in Miami

Most of the world became aware of Zika virus earlier this year when doctors in Brazil noticed a correlation between Zika virus infection in pregnant women and microcephaly in their newborn children. Recent articles in the New York Times on July 29th and August 1st report a notable shift in the course of the Zika virus epidemic – local transmission of the virus within the United States. In the last year, there have been over 1600 cases of Zika virus detected in the United States, but nearly all of these were imported infections, in which individuals became infected while traveling in Zika-endemic regions or through sexual transmission of the virus from people traveling outside of the United States. Because the Zika-carrying mosquito species, Aedes Aegypti is resident in parts of the continental United States, many people expected that it was only a matter of time before Zika virus would be transmitted locally within the United States. On July 29th, the Centers for Disease Control and Prevention and the Florida State Department of Health reported that Zika virus was transmitted to at least four individuals in the Wynwood neighborhood of Miami. By August 1st, the number of individuals infected in the neighborhood had risen to fourteen, and the CDC issued a travel advisory discouraging pregnant women from traveling to the affected area. Though Congress went to recess last month without passing a bill to provide funding for the fight against Zika virus, perhaps, and hopefully, the news of local Zika transmission will motivate bipartisan action in Congress to fund mosquito control efforts and basic research on this still poorly understood virus. (Pam Belluck, New York Times)

Clinical Research

First CRISPR-based clinical trial set to begin this month

The gene-editing technique commonly referred to as CRISPR-Cas9 has received significant attention over the last year because of its impressive potential to target, cut, and modify nearly any sequence of interest within a genome. David Cyranoski reported for Nature News that scientists in China are poised to be the first to use CRISPR-Cas9 technology in a human clinical trial. The trial will enroll individuals with metastatic, non-small cell lung cancer, for whom other treatment options have failed. T cells, immune cells capable of killing infected, cancerous, or otherwise afflicted cells, will be removed from these individuals and modified using CRISPR-Cas9 to delete the gene for a protein called PD-1, which plays a role in downregulating the immune response. It is hoped that removing PD-1 will make the participants’ T cells better able to mount an immune response against cancer cells. As an additional measure of safety, the genome of modified cells will be sequenced in order to confirm that there are no off-target modifications outside of the PD-1 gene that might impact the safety or validity of the study. Initially the trial will test the safety of introducing CRISPR-Cas9-modified cells into ten individuals at three different dosages, while also monitoring the effect of the treatment on cancer progression. A similar trial is set to begin in the United States later this year. These will be important proof-of-concept studies to show that CRISPR-Cas9 can be applied safely and effectively in the treatment of disease. (David Cyranoski, Nature News)

Drug Development – Antibiotic Resistance

New Funding for Antibiotics Development

Bacterial resistance to antibiotics is a significant and emerging threat to public health. Methicillin resistant Staphylococcus aureus (MRSA) – a commonly reported and widely feared strain of S. aureus – is one example of a bacterium that was once readily treatable with penicillin and related antibiotics, but which became difficult to treat after acquiring resistance genes. As current antibiotics become less effective against pathogenic bacteria, doctors are running out of tools to treat infections. An important hurdle to addressing the problem of antibiotic resistance is obtaining the funding necessary to support basic research. Unlike drugs to treat chronic health problems, effective antibiotics designed to cure infections of limited duration, are not necessarily a good investment for pharmaceutical companies. Asher Mullard reported for Nature News that CARB-X – Combating Antibiotic Resistant Bacteria Biopharmaceutical Accelerator- a public-private partnership supported primarily by the US government, Wellcome Trust, and the UK-based Centre for Antimicrobial Resistance hopes to provide US $350 million to motivate and accelerate the development of new antibiotics over the next five years. While many biotechnology companies support the initiative, some researchers, including Kim Lewis a researcher at Northeastern University, worry that CARB-X is too heavily focused on drug development instead of the discovery of novel antibacterial compounds. Despite their limitations CARB-X and other similar programs will likely provide valuable incentives for biotechnology and academic researchers to work towards better antibiotics for the common good. (Asher Mullard, Nature News)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

August 9, 2016 at 9:00 am

Science Policy Around the Web – June 28, 2016

leave a comment »

By: Sterling Payne, B.Sc.

Licensed via Creative Commons

Bioengineering and Human Trials

First CRISPR clinical trial gets green light from US panel

Since its discovery, CRISPR-Cas9 has become one of the hottest and most sought-after techniques and area of research in science. Whether owing to its ease of use, wide accessibility, or myriad modifications, the research and public health worlds are captivated by CRISPR. Almost one week ago, on June 21st, the National Institutes of Health (NIH) opened the door for the first use of CRISPR in humans as a potential therapeutic in a clinical trial. The trial in question focuses on the use of T-cells to fight cancer by introducing exogenous genetic material via CRISPR-Cas9, followed by the infusion of the cells into cancer patients.

This is not the first time that a gene-editing technique has been used to edit human cells. In 2014, Carl June, an immunologist at the University of Pennsylvania and scientific adviser on the current trial, led a trial that used zinc finger nucleases to edit T-cells in hopes of preventing viral infection. However, the recent approval of this single CRISPR proposal will most likely pave the way for many more, and in a short amount of time. The advancement of CRISPR-Cas9 in the past few years and its potential use in humans is staggering. However, an influx of clinical trials involving this technique will pose more policy discussions and questions to assure scientists and the public that the technique is being used humanely and ethically. It will be interesting to see how the definitions of what is humane and ethical in the eyes of policy-holders potentially changes in the coming years thanks to CRISPR. (Sara Reardon, Nature News)

Brexit and Research

Researchers deplore U.K. decision to leave the European Union 

On June 23rd, 2016, the electorate of Britain voted in a referendum to leave the European Union, creatively named the “Brexit”. Fast forward several days, and the consequences of the vote on multiple levels – such as global markets, immigration, employment, timelines and next steps – are still being determined. At it’s core, the U.K.’s decision to leave was not largely based on research science. However, multiple British science authorities are flabbergasted by the decision, a majority of whom believe was a mistake.

With Britain’s decision to leave the EU, it will be interesting to see how policymakers deal with the inevitable battles in terms of funding, personnel, and travel. One particular talking point is the fate of the U.K.’s standing in the Horizon 2020 program, a massively financed research initiative with 9 billion British pounds of funding over seven years (2014-2020). The initiative provides a means of support for collaboration across different European countries, and if the U.K. would like to continue as a player in the initiative, they will have to make a decision now and start preparing the necessary documents necessary to become an “associate”, for example. Policymakers have a long, winding road ahead of them in order to ensure the survival of the myriad collaborations and research projects headed by Britain. (Daniel Clery, Science News)

Patent Law

The Supreme Court decision that’s shaking up biotech 

The Supreme Court recently rejected the request to hear an appeal from Sequenom (San Diego, CA), a biotech. company specializing in prenatal testing. Sequenom’s test, MaterniT21, relies on the presence of fetal DNA in the plasma of the mother, allowing for a non-invasive method of analyzing the fetus for certain conditions such as Down’s syndrome (trisomy 21). The patent for the test remained intact until 2013, where in a case against Ariosa Diagnostics, a lower court ruled the patent as invalid. The Supreme Court’s failure to hear Sequenom’s appeal means that the previous ruling stands, and that poses a problem with implications far beyond a single biotech company.

Sequenom turned to the Supreme Court for thorough consideration and a final decision on whether or not their patent remains valid, although it does rely on the naturally occurring process of fetal DNA showing up in plasma. The highest justice’s silence in this situation creates an ambiguity around all patents in the biosciences. At what point does novelty evanesce into nature? Should patents, the protectors of intellectual property, really be granted in a case where natural processes are required to retain their validity? These are the types of questions that are being asked as a result of the Court’s silence, and that could plague future investments in biotechnology, a field that is highly represented by startups. (Douglas C. Pizac, AP/STATnews)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

June 28, 2016 at 2:30 pm

Science Policy Around the Web – January 15, 2016

with one comment

By: Amanda Whiting, Ph.D.

photo credit: Microbe World via photopin cc

West Africa Ebola epidemic

WHO declares Ebola outbreak over

On Thursday, January 14, 2016, the World Health Organization (WHO) marked the end of the Ebola epidemic in West Africa at a press conference in Geneva, Switzerland, by declaring Liberia free of Ebola. This declaration means that at least 42 days (two 21-day incubation cycles of the virus) have passed since the last confirmed case of Ebola in Liberia tested negative for the virus twice. The other two countries most affected by the outbreak, Sierra Leone and Guinea, were declared Ebola-free in early November and late December 2015, respectively. This announcement marks the first time that all known chains of viral transmission in these three countries have been stopped. “Detecting and breaking every chain of transmission has been a monumental achievement,” said WHO director-general Margaret Chan in a news release. The final cost of this epidemic has been estimated at 11 300 people killed out of 28 500 infected, making it one of the worst international health disasters in history.

While Rick Brennan, directed of emergency risk management and humanitarian action at WHO stated that “today is a good day,” the risk of virus reemerging is a very real threat, and he stressed the need for continued vigilance. Liberia was first declared Ebola-free in May 2015 but has twice encountered new flare-ups of the virus, with the latest in November 2015. The risk of Ebola causing new flare-ups comes from the fact that Ebola can persist in some tissues and bodily fluids of survivors for months, such as in the eyeball fluid of one survivor, and in the semen of some survivors up to a year after infection.

With the outbreak now officially over, scientists and public health officials are looking at what lessons can and should be learned from it. The most important lesson, according to Dr. Anthony Fauci, head of the National Institute of Allergy and Infectious Diseases (NIAID) and public face of the small US-based outbreak, is the need to strengthen health care systems in low- and middle-income countries. “If there was a system to have recognized and stopped the outbreak that began with the child in Guinea in December, 2013, we might have avoided the explosive outbreaks in Sierra Leone and Liberia.”(Kai Kupferschmidt, ScienceMag.org, Erika Check Hayden, NatureNews)

Embryonic Research

U.K. researcher details proposal for CRISPR editing of human embryos

A researcher in the United Kingdom, Kathy Niakan, of the Francis Crick Institute in London, has proposed using CRISPR genetic editing on embryos to study genes involved in early human development. Dr. Niakan previously applied to the U.K.’s Human Fertilization and Embryology Authority (HFEA) in September 2015 to renew her existing license to use human embryos in research, and to extend that license to include CRISPR editing. This proposal has just come up for review by HFEA, and Niakan met with journalists from the Science Media Centre on January 13th to talk about her research and proposal in advance of any decision. Her research currently uses human embryos that are left over from in vitro fertilization attempts and donated for research. After their use, these embryos are destroyed when they are 7 days old. Niakan hopes to use CRISPR to knock out genes known to play a role in human development when the embryos are single cells at only 1 day old, and study how that affects their development into blastocytes, a 5-day old embryonic structure. While Niakan speculated that research of this type might one day lead to improved treatments for infertility, for the near future her research involves one narrow goal – to determine what specific genes do in blastocytes. Whether or not she will be able to pursue these studies still depends on the near-future decision of the HFEA. (Erik Stokstad, ScienceInsider)

Public Heath Recommendations

Eggs are okay again

The final version of the 2015-2020 Dietary Guidelines for Americans was announced on January 7, 2016 in a joint press release from the Department of Health and Human Services (HHS) and the US Department of Agriculture (USDA). One of the more interesting points that many have jumped on was the fact that the 2015 guideline does not include a limit to cholesterol intake, and instead just states that “individuals should eat as little dietary cholesterol as possible.” Previous guidelines had recommended that Americans restrict their daily cholesterol intake to no more than 300 mg. This new governmental stance on cholesterol is more in line with current research and the findings of other nations. This does not mean that high blood levels of cholesterol are no longer bad – high levels of low-density lipoprotein (LDL) cholesterol have been clearly linked to heart disease. However, the contribution of foods high in cholesterol (such as eggs) to overall blood cholesterol levels may be overshadowed by the amount of cholesterol produced by a person’s own liver. As such, the amount of cholesterol one consumes becomes an individual’s personal decision based on their own medical history and situation. As with many aspects of health care, personalized nutrition may become the future of nutrition science. (Ariana Eunjung Cha, The Washington Post)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

January 15, 2016 at 9:00 am