Science Policy For All

Because science policy affects everyone.

Posts Tagged ‘drug policy

The Economic Impact of Biosimilars on Healthcare

leave a comment »

By: Devika Kapuria, MD

          Biologic drugs, also defined as large molecules, are an ever-increasing source of healthcare costs in the US. In contrast to small, chemically manufactured molecules, classic active substances that make up 90 percent of the drugs on the market today, biologics are therapeutic proteins that undergo production through biotechnological processes, some of which may require over 1000 steps. The average daily cost of a biologic in the US is $45 when compared with a chemical drug that costs only $2. Though expensive, their advent has significantly changed disease management and improved outcomes for patients with chronic diseases such as inflammatory bowel disease, rheumatoid arthritis and various forms of cancer. Between 2015-2016, biologics accounted for 20% of the global health market, and they are predicted to increase to almost 30% by 2020. Worldwide revenue from biologic drugs quadrupled from US $47 billion in 2002 to over US $200 billion in 2013.

The United States’ Food and Drug Administration (FDA) has defined a biosimilar as a biologic product that is highly similar to the reference product, notwithstanding minor differences in clinically-inactive components, and for which there are no clinically meaningful differences between the biologic product and the innovator product in terms of safety, purity and efficacy. For example, CT-P13 (Inflectra) is a biosimilar to infliximab (chimeric monoclonal antibody against TNF-α) that has recently obtained approval from the FDA for use of treatment of inflammatory bowel disease. CT-P13 has similar but slightly different pharmacokinetics and efficacy compared to infliximab. With many biologics going off patent, the biosimilar industry has expanded greatly. In the last two years alone, the FDA approved 4 biosimilar medications: Zarxio (filgrastim-sndz), Inflectra (infliximab-dyyb), Erelzi (etanercept-szzs) and Amjevita (adalimumab-atto).

Unlike generic versions of chemical drugs (small molecules that are significantly cheaper than their branded counterparts), the price difference between a biosimilar and the original biologic is not huge. This is due to several reasons. First, the development time and cost for biosimilars is much more than for generic medications. It takes 8-10 years and several hundred million dollars for the development of a biosimilar compared to around 5 years and $1-$5 million for the generic version of a small molecule drug. With only single entrants per category in the US, biosimilars are priced 15-20% lower than their brand name rivals, which, though cheaper, still amount to hundreds of thousands of dollars. By the end of 2016, the estimated global sales from biosimilars amounted to US $2.6 billion, and nearly $4 billion by 2019. Estimates for the cost savings of biosimilars for the US market are variable; the Congressional Budget Office estimated that the BPCI (Biologics Price Competition and Innovation) Act of 2009 would reduce expenditures on biologics by $25 billion by 2018. Another analysis from the Rand Corporation estimated that biosimilars would result in a $44.2 billion reduction in biologic spending between 2014 and 2024.

In the United States, a regulatory approval pathway for biosimilars was not established till the Patient Protection and Affordable Care Act of 2010. However, biosimilars have been used in Europe for over a decade, and this has led to the development of strategies for quicker adaptation, including changes in manufacturing, scaling up production and adapting to local healthcare policies. These changes have led to a competitive performance of biosimilars in the European market, with first generation biosimilars taking up between 50-80% of the market across 5 European countries, with an expected cost savings of $15 to$44 billion by 2020. One example that demonstrates a significant discount involves the marketing of Remsima, a biosimilar of Remicade (infliximab). In Norway, an aggressive approach towards marketing of Remsima was adopted with a 69% discount in comparison to the reference product. After two years, Remsima has garnered 92.9% of the market share in the country.

The shift to biosimilars may be challenging for both physicians and patients. While safety concerns related to biosimilars have been alleviated with post marketing studies from Europe, there still remains a significant lack of awareness about biosimilars amongst healthcare providers, especially about prescribing and administering them. Patient acceptance remains an important aspect as well, with several patients loyal to the reference brand who may not have the same level of confidence in the biosimilar. Also, like with generics, patients may believe that biosimilars are, in some way, inferior to the reference product. Increased reporting of post marketing studies and pharmacovigilance can play a role in alleviating some of these concerns.

In 2015, the FDA approved the first biosimilar in the US, after which, it has published a series of guidelines for biosimilar approval, under the BPCA act, including demonstrating biosimilarity and interchangeability with the reference product. This includes a total of 3 final guideline documents and 5 draft guidance documents. Starting in September 2017, the World Health Organization will accept applications for prequalification into their Essential Medication list for biosimilar versions of rituximab and trastuzumab, for the treatment of cancer. This program ensures that medications purchased by international agencies like the UNICEF meet standards for quality, safety and efficacy. Hopefully, this will increase competition in the biosimilar market to reduce price and increase access to medications in low-income countries.

Both human and economic factors need to be considered in this rapidly growing field. Increasing awareness among prescribers and patients about the safety and efficacy of biosimilars as well as improving regulatory aspects are essential for the widespread adaptation of biosimilars.

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

July 19, 2017 at 10:42 am

Science Policy Around the Web – June 23, 2017

leave a comment »

By: Saurav Seshadri, PhD

Drug Policy

Trump’s New Policy to Tackle Sky-High Drug Prices Makes Sense — Sort Of

Tackling high prescription drug prices was a repeated promise of the Trump campaign. The Trump administration has now taken its first step towards fulfilling this pledge, outlined in a blog post by Food and Drug Administration (FDA) commissioner Scott Gottlieb. The agency will pursue a Drug Competition Action Plan, whose goal will be to eliminate obstacles to the development of cheap generic drugs – particularly those caused by loopholes in existing FDA policies, which are exploited by pharmaceutical companies to extend their patent exclusivity period and maximize profits. An example of such ‘gaming’ the system, cited in the post, is the practice of limiting access to branded products for comparative testing by generic developers. Ultimately, the FDA will work closely with the Federal Trade Commission (FTC) to address such issues, since directly regulating business practices is outside its mandate.

On its face, the FDA’s effort is a step in the right direction. Availability of generics reduces the cost of medications by over half within the first year, and according to a recent Congressional report, manufacturers state that ‘competition…is the primary driver of generic drug prices’. However, it ignores evidence that the real driver of increased drug spending is new, branded medicines, not overpriced generics. In fact, early indications are that Trump’s policies will favor the pharmaceutical companies that produce such medicines, by reducing regulations and apparently abandoning his promise to enable the government to negotiate drug pricing through Medicare. Overall, these actions signal a commitment to promoting free market mechanisms in the pharmaceutical industry; time will tell whether this approach will actually lead to more affordable drugs. (Julia Belluz, Vox)

Cancer

In a Major Shift, Cancer Drugs go ‘Tissue-Agnostic’

With the landmark approval of Keytruda in May, the Food and Drug Administration (FDA) appears to have ushered in a new era of cancer drug development.  So far, cancer treatment and drug evaluation have largely used the tumor’s tissue of origin as a starting point. Keytruda (an immune system enabling drug developed by Merck and approved for melanoma in 2014) marked the first departure from this approach, receiving priority approval to treat any solid tumor containing a mutation in the mismatch repair pathway, regardless of context. Recently released data suggests that another tissue-agnostic cancer therapy is on the way: larotrectinib (a cell growth inhibitor developed by Loxo Oncology) showed high efficacy for any tumor with a certain biomarker (TRK fusion). Several other such drugs, whose indications will be based on tumor genetics rather than location, are in the clinical pipeline.

Although these advances have generated significant excitement in the cancer community, some caveats exist. First, identifying the patients that could benefit from tissue-agnostic treatments will require individual initiative and depend on the cost of screening, particularly when considering markers that are rare for a certain tumor type. A potential solution is suggested by the NCI-MATCH trial, part of the NIH’s Precision Medicine Initiative (PMI) – in it, patients can enroll in one of several parallel clinical trials if a corresponding drug-targeted mutation is found in their tumor’s genome. If these trials prove effective, patients could eventually be regularly matched with a personalized, tissue-agnostic, biologically valid treatment, based on a standardized screen.  Second, researchers caution that tissue-agnostic studies should have a strong scientific rationale and/or breakthrough-level efficacy. Otherwise, such efforts ‘could actually slow drug development if there are differential effects across tumor types by diverting resources from enrolling patients in a predominant population or in the tumor type most likely to respond’.

Despite these concerns, the tissue-agnostic paradigm offers great promise for cancer patients. NIH-funded resources such as The Cancer Genome Atlas could be invaluable to this field moving forward. (Ken Garber, Science)

Scientific Publishing

US Court Grants Elsevier Millions in Damages from Sci-Hub

A New York district court has awarded academic publishing giant Elsevier $15 million in damages from Alexandra Elbakyan, founder of the website Sci-Hub, for copyright infringement. Elbakyan, a 27-year-old neuroscientist turned programmer, started Sci-Hub in 2011 with the goal of ‘remov[ing] all barriers in the way of science’. The site allows users to download research papers that would normally be blocked by a paywall, by obtaining credentials from subscribing institutions and using them to access publisher-run databases like ScienceDirect. Over 60 million papers are posted on Sci-Hub, and users downloaded 28 million articles in 2016.

Elbakyan’s case is reminiscent of Aaron Swartz, another high-profile champion of open access to scientific research. Faced with federal charges related to his hacking of journal archive JSTOR, Swartz tragically committed suicide in 2013. Both Elbakyan and Swartz found publishers’ ability to profit from restricting access to scientific literature, effectively withholding knowledge from anyone outside of a privileged inner circle, as well as the legal protection provided to this system, to be deeply unethical. Their willingness to act upon these convictions has earned each a sizable following in the scientific community.

For their part, publishers claim that fees go towards overhead, and point to significant efforts to expand free and open access programs. While judges have so far been sympathetic, Elsevier’s legal battle has been largely one-sided. Elbakyan has been ignoring rulings requiring her to shut down Sci-Hub since 2015, opting to simply change domains instead, and since she is currently based in Russia and has no American assets, she is unlikely to pay any damages. (Quirin Schiermeier, Nature News)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

June 23, 2017 at 11:00 am

Science Policy Around the Web – June 20, 2017

leave a comment »

By: Eric Cheng, PhD

Source: Flickr, via Creative Commons (CC BY 2.0)

Research Funding

America is Still First in Science, but China Rose Fast as Funding Stalled in U. S. and Other Countries

American scientific groups continue to publish more biomedical research discoveries than groups from any other country, and the United States still leads the world in research and development expenditures. However, American dominance is slowly diminishing as China’s increase in funding on science over the last twenty years are starting to pay off. Chinese biomedical research now ranks fourth in the world for total number of discoveries published in six top-tier journals. This is with China spending three-fourths of the amount of money that the U.S. spent on research and development in 2015. In addition, new discoveries and advances in science are becoming more of a collaborative effort, which include researchers from around the world.

These findings come from research published in The Journal of Clinical Investigation by a group of University of Michigan researchers. The analysis comes at an important time for Congress to think about whether the annual uncertainty of the National Institutes of Health’s(NIH) budget and proposed cuts are in the nation’s best interest over the long-term. Bishr Omary, the senior author of the article commented, “If we continue on the path we’re on, it will be harder to maintain our lead and, even more importantly, we could be disenchanting the next generation of bright and passionate biomedical scientists who see a limited future in pursuing a scientist or physician-investigator career.”

The research was based on data up to 2015. During the current fiscal year of 2017, funding for NIH was proposed to be increased by 2 billion dollars, which is the second year in a row where funding was increased after 12 years of flat budgets. With this increase in funding, Omary hopes that, “our current and future investment in NIH and other federal research support agencies will rise above any branch of government to help our next generation reach their potential and dreams.” (University of Michigan, ScienceDaily)

Opioid Crisis

The Role of Science in Addressing the Opioid Crisis

Opioid addiction is an ongoing public health crisis. Millions of individuals all over the United States suffer from opioid use disorder with millions more suffering from chronic pain. Due to the urgency and scale of this crisis, innovative scientific solutions need to be developed. As part of a government-wide effort to address this crisis, the National Institutes of Health (NIH) is supplementing current research efforts with a public-private collaborative research initiative on pain and opioid abuse.

The Director of NIH, Dr. Francis Collins met with research and development leaders from biopharmaceutical companies in April 2017 to discuss new ways in which  government and industry can work together to address the opioid crisis. Dr. Collins stated how some advances such as improved formulations, opioids with abuse-deterrent properties, longer-acting overdose-reversal drugs, and repurposing of treatments approved for other conditions may be quick. Other advances such as mu-opioid receptor-based agonists, opioid vaccines, and novel overdose-reversal medications may be slower to develop. Overall, the goal for this partnership is to reduce the time typically required to develop new, safe, and effective therapeutics to half the average time. (Nora D. Volkow and Francis S. Collins, New England Journal of Medicine)

Climate Change

France is Offering US Scientists 4-year Grants to Move to the Country and do Research

Following President Donald Trump’s decision to withdraw the United States from the Paris climate agreement, France created an initiative that will allow researchers, teachers, and students to apply for a fully financed four-year grant to combat climate change. The website for the initiativesays,

“You will be able to stay in France at least for the duration of the grant, and longer if you are granted a permanent position. There is no restriction on your husband / wife working in France. If you have children, note that French public schools are free, and the tuition fees of universities and ‘grandes écoles’ are very low compared to the American system.”

Since Emmanuel Macron won the French presidential election in May, he has addressed American scientists who feel alienated by the Trump administration. Macron has promised strong funding for climate initiatives. However, some U.S. scientists like David Blockstein of the National Council for Science and the Environment see Macron’s invitation as “both a publicity stunt and a real opportunity.” Although it is not very likely that many U.S. researchers will take up the offer, it does provide a “sharp contrast to an increasingly hostile U.S. political environment for science.” (Chris Weller, Business Insider)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

June 20, 2017 at 1:10 pm

Growing Need for More Clinical Trials in Pediatrics

leave a comment »

By: Erin Turbitt, PhD

Source: Flickr by Claudia Seidensticker via Creative Commons

      There have been substantial advances in biomedical research in recent decades in the US, yet children have not benefited through improvements in health and well-being to the same degree as adults. An illustrative example is that many drugs used to treat children have not been approved for use by the Food and Drug Administration (FDA). Comparatively, many more drugs have been approved for use in adult populations. As a result, some drugs are prescribed to pediatric patients outside the specifications for which they have been approved for use, referred to as ‘off-label’ prescribing. For example, some drugs approved for Alzheimer’s Disease are used to treat Autism in children. The drug donepezil used to treat dementia in Alzheimer’s patients is used to improve sleep quality in children with Autism. Another example is the use of the pain medication paracetamol in premature infants in the absence of the knowledge on the effects among this population. While decisions about off-label prescribing are usually informed by scientific evidence and professional judgement, there may be associated harms. There is growing recognition that children are not ‘little adults’ and their developing brains and bodies may react differently to those of fully developed adults. While doses for children are often calculated by scaling from adult dosing after adjusting for body weight, the stage of development of the child also affects responses to drugs. Babies have difficulties breaking down drugs due to the immaturity of the kidneys and liver, whereas toddlers are able to more effectively breakdown drugs.

The FDA requires data about drug safety and efficacy in children before issuing approvals for the use of drugs in pediatric populations. The best way to produce this evidence is through clinical drug trials. Historically, the use of children in research has been ethically fraught, with some of the early examples from vaccine trials, such as the development of the smallpox vaccine in the 1790s. Edward Jenner, who developed the smallpox vaccine, has famously been reported to have tested the vaccine on several young children including his own without consent from the children’s families. Over the next few centuries, many researchers would test new treatments including drugs and surgical procedures on institutionalized children. It was not until the early 20th century that these practices were criticized and debate began over the ethical use of children in research. Today, in general, the ethical guidance for inclusion of children in research specifies that individuals unable to exercise informed consent (including minors) are permitted to participate in research providing informed consent is gained from their parent or legal guardian. In addition to a guardian’s informed consent, assent (‘affirmative agreement’) of the child is also required where appropriate. Furthermore, research protocols involving children must be subject to rigorous evaluation by Institutional Review Boards to allow researchers to conduct their research.

Contributing to the lack of evidence of the effects of drugs in children is that fewer clinical trials are conducted in children than adults. One study reports that from 2005-2010, there were 10x fewer trials registered in the US for children compared to trials registered for adults. Recognizing the need to increase the number of pediatric clinical trials, the FDA introduced incentives to encourage the study of interventions in pediatric populations: the Best Pharmaceuticals for Children Act (BPCA) and the Pediatric Research Equity Act (PREA). The BPCA delays approval of competing generic drugs by six months and encourages NIH to prioritize pediatric clinical trials for drugs that require further evidence in children. The PREA requires more companies to have pediatric-focused drugs assessed in children. Combined, these initiatives have resulted in benefits such as improving the labeling of over 600 drugs to include pediatric safety information, such as approved use and dosing information. Noteworthy examples include two asthma medications, four influenza vaccines, six medications for seizure disorders and two products for treating migraines. However, downsides to these incentives have also been reported. Pediatricians have voiced concern over the increasing cost of some these drugs developed specifically for children, which have involved minimal innovation. For example, approval of liquid formulations of a drug used to treat heart problems in children has resulted in this formulation costing 700 times more than the tablet equivalent.

A further aspect that must be considered when conducting pediatric clinical trials is the large dropout rates of participants, and difficulty recruiting adequate numbers of children (especially for trials including rare disease populations) sometimes leading to discontinuation of trials. A recent report indicates that 19% of trials were discontinued early from 2008-2010 with an estimated 8,369 children enrolled in these trials that were never completed. While some trials are discontinued for safety reasons or efficacy findings that suggest changes in standard of care, many (37%) are discontinued due to poor patient accrual. There is insufficient research on the factors influencing parental decision-making for entering their child to a clinical trial and research into this area may lead to improvements in patient recruitment for these trials. This research must include or be informed by members of the community, such as parents of children deciding whether to enroll their child in a clinical trial, and disease advocacy groups. The FDA has an initiative to support the inclusion of community members in the drug development process. Through the Patient-Focused Drug Development initiative, patient perspectives are sought of the benefit-risk assessment process. For example, patients are asked to comment on what worries them the most about their condition, what they would consider to be meaningful improvement, and how they would weigh potential benefits of treatments with common side-effects. This initiative involves public meetings held from 2013-2017 focused on over 20 disease areas. While the majority of the diseases selected more commonly affect adults than children, some child-specific disease areas are included. For example, on May 4, 2017 public meeting was held on Patient-Focused Drug Development for Autism. The meeting included discussions from a panel of caregivers about the significant health effects and daily impacts of autism and current approaches to treatment.

While it is encouraging that the number of pediatric trials are increasing, ultimately leading to improved treatments and outcomes for children, there remain many challenges ahead for pediatric drug research. Future research in this area must explore parental decision-making and experiences, which can inform of the motivations and risk tolerances of parents considering entering their child to a clinical trial and potentially improve trial recruitment rates. This research can also contribute to ensuring that clinical trials are ethically conducted; adequately balancing the need for more research with the potential for harms to pediatric research participants.

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

May 24, 2017 at 5:04 pm

Science Policy Around the Web – April 25, 2017

leave a comment »

By: Eric Cheng, PhD

Photo source: pixabay.com

FDA

FDA Nominee Gottlieb Tackles Vaccines, Trial Design at Hearing

The President’s nominee to head the FDA, Scott Gottlieb, MD, sat before lawmakers for his confirmation hearing before the Senate’s health committee. Gottlieb, a hospitalist and former FDA official, was questioned on many controversial topics on health.  On the topic of vaccines and autism, Gottlieb said, “I think we need to come to the point where we can accept ‘No’ for an answer, and come to the conclusion that there is no causal link between vaccinations and autism.”

On the topic of double-blind randomized trials as the “gold standard” for medical treatment research, Gottlieb was more cautious. He believed that there are more “opportunities to modernize how we do clinical trials in ways that aren’t going to sacrifice on the gold standard of safety and effectiveness. Perhaps there are ways to think of clinical trial constructs that don’t require the tight randomization that current clinical trials do.” What this suggests is a push towards more adaptive trials that would allow researchers to review results before a study’s endpoint and would allow changes to treatment groups in a study, which is in contrast to traditional randomized controlled trials.

Another less controversial but popular topic in the hearing was on opioid abuse. Gottlieb believed that opioid abuse is “a public health emergency on the order of Ebola and Zika” and that bolder steps will be needed to address this issue.

The committee will vote on whether to move Gottlieb’s nomination to the Senate floor after the Senate returns in late April from a 2-week recess. (Joyce Frieden, MedPage Today)

Healthcare Policy

Trump Administration Still Plans to Undo Parts of the ACA, Tom Price Testifies

Health and Human Services Secretary Tom Price made one thing clear during his testimony to the House appropriations committee: “The administration is still intent on dismantling parts of the Affordable Care Act even if Republicans lack the votes to rewrite it.”

Price discussed how, as the Health and Human Services Secretary, his department could scale back several federal mandates that include “essential benefits” in coverage to make insurance plans cheaper. He did not say if the administration will continue to provide cost-sharing subsidies for insurers, which has been a topic of discussion on items to change in the Affordable Care Act. However, removing subsidies will bring “significant premium increases,” said Michael Adelberg, a health-care principal at FaegreBD Consulting. He predicts that the removal of these subsidies will cause some insurers to drop out while the remaining insurers will seek rate increases to compensate.

Regardless of these discussions, the individual mandate remains in place with Price telling the panel, “So long as the law’s on the books, we at the department are obliged to uphold the law.” (Juliet Eilperin and Mike DeBonis, Washington Post)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

April 25, 2017 at 9:53 am

The Trans-Pacific Partnership and its Impact on Pharmaceutical Affordability

leave a comment »

By: Shakira M. Nelson, PhD, MPH

        For many, the Trans-Pacific Partnership (TPP) was a point of great debate during the 2016 Presidential primaries and election. As a simplified explanation, the TPP is a free-trade agreement involving the United States, Canada, Australia, Japan, New Zealand, Mexico, Chile, Peru, Brunei, Malaysia, Singapore and Vietnam, intended to “level the trading playing field” through the elimination of tariffs and other laws that create trade barriers. In its final form, the TPP would impact up to one-third of world trade and 40% of the global gross domestic product. Many who debated the ramifications of the TPP did so in the context of foreign policy interests. Although aligned with foreign policy, a major part of the TPP deals with intellectual property protection, and pharmaceutical drug development. If implemented, the effects of the TPP could greatly diminish public access to affordable medicines, both domestically and internationally. Moreover, the stronghold the TPP places on intellectual property could limit the development and marketing of less expensive options.

Intellectual property can be divided into two categories: industrial property and copyright. Patents, trademarks, and industrial design fall under industrial property. Patent development is a large part of scientists’ work, seen as almost a necessity to incentivizing innovation. Many argue that, without the ability to patent inventions and significant findings, scientists would not be able to generate profits used to sustain research and development; within the pharmaceutical industry, patents are the proverbial bread-and-butter. When in place, patents create a stronghold around the release of new chemical drugs, which prevents competition by generic brands. The standard length of time of a patent for a chemical drug is 20 years, which starts from the time the drug is invented.

Many new medicines under development today fall under the category of ‘biologics’. As the name suggests, biologics are treatments made from biological sources, and are very different from chemical drugs. Created to treat a multitude of diseases, including Ebola and cancer, biological sources include vaccines, anti-toxins, proteins, and monoclonal antibodies. Given their structural complexity compared to traditional drugs, and use of recombinant DNA technology, biologics are more difficult, and costlier to make. Moreover, manufacturers have a greater burden in ensuring product consistency, quality, and purity over time. This is done through certifying that the manufacturing process remains the same over time. Because of this, it is estimated that the price to manufacture biologics cost on average more than 22 times the price of chemical drugs. Current laws state that generic biologic development, known as biosimilars, cannot be approved until 12 years after the branded product has been approved – this is known as an exclusivity period. This was enacted under the Biologics Price Competition and Innovation Act of 2009, by the Food & Drug Administration (FDA).

The challenge with current policies is establishing a period-of-time that balances the need for companies to generate profits and cash flows, which will incentive them to conduct more research and compensate them for the extensive manufacturing processes, with the need to provide greater access through launching generic drugs and biosimilars. The trouble with the proposed policies of the TPP agreement is that they seem to embolden the pharmaceutical companies by introducing changes that would prevent competition from generics and biosimilars for longer periods of time than the current basic terms. The implications of this are far-reaching, as it may lead to a significant increase in the current costs of pharmaceutical drugs and biologics, hindering the health of the patients who rely upon these treatments.

Critics of the current system of patent length and biologic exclusivity periods fear that rather than incentivizing innovation, companies are being rewarded through their ability to charge higher amounts for drugs without the fear of competition on the market. Health policy experts concur, identifying policies such as the Hatch-Waxman Act of 1984 in allowing for the creation of drug monopolies, and “going too far in compensating the pharmaceutical industry at the public’s expense”. A report released in 2009 by the Federal Trade Commission stated that biosimilar development was more difficult to achieve than traditional generic drugs. For example, development requires comparisons to the original biologic, to prove efficacy and equivalence. Biosimilars must share the same mechanism of action, with no clinically significant differences in terms of safety or potency for the approved condition of use. The steps necessary to achieve this are significant, and therefore imposing a 12-year exclusivity period on biologics may be unnecessary. US Congressmen have pushed to compromise, floating an amendment to the TPP that would lower the exclusivity period to 8 years. However, critics and patients who rely upon drug competition to lower market prices, have protested this amendment stating that costs of new drugs and biologics are too high, and 8 years is too long of a length of time to wait for affordable generics and biosimilars to come on to the market.

The impact of decreasing the length of time it takes for biosimilars to come onto the market can be seen with Neupogen, a leukemia drug that was first approved by the FDA in 1991. Delivered via injection, Neupogen costs patients $3,000 for 10 injections. With injections needed daily, this drug could carry a price tag of well over $100,000 per year. It wasn’t until recently, however, that the first biosimilar was approved on the US market. The biosimilar, Zarxio, was approved as a leukemia drug and is priced at more than $1000 less than Neupogen. This pricing has the potential to decrease the yearly costs of this drug from $100,000 with Neupogen to $55,000-$75,000. Further evidence of these financial savings was provided by the Rand Corporation, which predicted a savings of over $44 billion over 10 years with an increased approval of biosimilars, for patients who rely upon these specific cancer treatments.

Internationally, the policies of the TPP also have far reaching effects on the availability and costs of pharmaceuticals. The 12-year exclusivity period would be imposed upon the other countries involved in the TPP, where currently for some, such as Brunei, there is no current exclusivity protection. By imposing the 12-year period, global competition could become restricted. Additionally, the TPP proposes other key patent protections that play a bigger role on the international market. One protection, known as evergreening, allows drug companies to request patent extensions for new uses of old drugs. The immediate effect of this is an extension of monopolies on drug sales for minor reasons. The second protection allows pharmaceutical companies to request patent extensions if it takes “more than 5 years for an application to be granted or rejected.” Advocacy groups fear that the price of drugs would undermine the efforts of health initiatives, such as the Global Fund to Fight AIDS, Tuberculosis, and Malaria. These initiatives rely upon price competition to manage costs, with the availability of cheap generics helping drive costs down.

Although the current administration has ended the USA’s association with the Trans-Pacific Partnership, it is important to note that other countries may try to implement some of the policies, affecting the availability and affordability of drug treatments. To decrease this burden, the US could work to assist in negotiating exceptions for the poorer and smaller countries, to help them meet any challenges they may come up against. Within the US itself, it is important for policies, laws and any future trade agreements to be modified, with more of a focus on the affordability and regulation of drugs and biologics. Imposing price controls may offer a modest benefit, but may not be a long-term solution. A focus on lowering the patent length for new drugs and biologics can be an immediate step. Although the push back from pharmaceutical lobbyists will be substantial, alleviating the financial burden on families afflicted with cancer and diseases should be the focus.

Have an interesting science policy link?  Share it in the comments!

Science Policy Around the Web – March 7, 2017

leave a comment »

By: Allison Dennis, BS

Synthetic opiates

Opioid Crisis

Keeping up With the Synthetic Opioids

At the center of the opioid crisis is an ever-expanding class of would-be-regulated drugs, exploited for their ability to produce morphine-like effects. Opioids, including morphine, heroin, and oxycodone interact with the opioid receptors found on the surface of our nerve cells to trigger feelings of euphoria, and block pain. Unfortunately, these substances can adversely affect the respiratory rhythm generating area of the central nervous system, resulting in respiratory depression, effectively disrupting the body’s instincts to breathe.

In 2013, the U.S. Drug Enforcement Agency began to detect in confiscated supplies of heroin the synthetic compound, Fentanyl, which is 50 to 100 times more potent and carries a much higher risk of respiratory depression. The supply was traced to illicit online pharmacies in China, prompting Chinese officials to implement an export ban on fentanyl. Just as medical drug makers audition new compounds through structure-based drug design, illicit drug makers quickly modified the structure of fentanyl to produce furanyl fentanyl, temporarily circumventing the ban. This was followed by the production of the elephant tranquilizer, carfentanil. As of March 1, 2017, China has placed a ban on the sale and manufacture of these compounds along with acrylfentanyl and valeryl fentanyl.

However the dynamic that has emerged is a global game of whack-a-mole. Cutting off the global supply of fentanyl-derived compounds will require negotiations with individual governments to cooperate in their ban. Willing chemists in Mexico may already be setting up to fill the gap left by the ban in China. As each substance is entering the U.S. Drug Enforcement Agency’s radar, the list of designer fentanyls is expanding. The rotating portfolio of synthetic opioids has left local law-enforcement and coroners stumped as to how to test for drugs not-yet-known to their screens, leaving a critical lag in identifying local suppliers. (Eric Niler, Wired Magazine)

Influenza

Keeping up with the Neuraminidases

The H7N9 strain of bird flu may be gaining ground as a global threat to human health. On Monday, the U.S. Department of Agriculture confirmed the presence of a highly pathogenic H7 avian influenza strain in a flock of chickens in Lincoln County, Tennessee. The agency is hurrying to establish the neuraminidase protein type, or “n-type” of the virus. In combination with the H7 hemagglutinin type, an N9 would consign this virus to the class of influenza the WHO has described as “definitely one of the most lethal influenza viruses we have seen so far.”

First detected in China in 2013, the H7N9 strain has been the source of yearly epidemics of human infections. These infections are characterized by severe respiratory illness, which has lead to death in 40% of cases. Over 5 flu seasons, 1222 human cases of H7N9 flu have been confirmed. Most infections have been tied to direct exposure to poultry where the avian strain circulates, indicating that the virus is not currently suited for sustained person-to-person spread. However, the ability of these viruses to recombine, gaining new specificities, keeps public health officials watchful.

Following the first reports of H7N9 infections in humans in 2013, the U.S. Department of Health and Human Services amassed a 12 million-dose stockpile of H7N9 specific vaccines. However, the strains selected as the seeds for these vaccines may not adequately protect against the particular H7N9 virus circulating now.  The U.S. CDC is currently evaluating the need to update its vaccine stockpiles in addition to recommending inclusion of H7N9 in next year’s seasonal flu vaccine. Many researchers are hoping to circumvent these concerns with the development of a universal vaccine, protective against all known flu strains. (Helen Branswell, STATnews)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

March 7, 2017 at 9:02 am