Science Policy For All

Because science policy affects everyone.

Posts Tagged ‘European Union

Science Policy Around the Web – June 16, 2017

leave a comment »

By: Emily Petrus, PhD

Source: pixabay

Science and Politics

Politics in Science – It’s Not Just the U.S.!

Romania is a country in eastern Europe that joined the European Union (EU) in 2007. Scientists there are few and far between; research spending only accounts for 0.49% of GDP, the lowest in Europe (the US spent 2.7% in 2016). After joining the EU, Romanian researchers were encouraged to apply for European merit-based grants and sit on international review boards such as the National Research Council and the National Council of Ethics. It seemed that research was making slow but steady progress, but the new administration elected this year has shaken things up in all facets of government, including scientific research.

The new research minister, Serban Valeca, removed the international members appointed to government councils that oversee research funding, ethics, innovation and science policy, and replaced them with city council members, government-loyal union members, researchers from second tier Romanian institutes and even a surgeon being investigated for embezzlement. Grant review panels have been shuffled to remove international scientists and replace them with domestic researchers, but only if they have a certificate saying their university approves of their participation. These changes mark a departure from welcoming international input into Romanian proceedings and a movement towards scientific isolation.

To combat these changes, Romanian scientists have formed an organization, Ad Astra, which calls on researchers to boycott grant evaluations. Combined with the shuffling, the councils have been suspended for 3 months, which delays funding and puts already under-funded researchers in peril. The European University Association calls the policies deeply concerning, and although the current president may disagree with the research minister’s handling of the situation, his political ties ensure he won’t hold much sway over how this plays out. A computer scientist at the University Politehnica in Bucharest, Costin Raiciu, is concerned that the policies will affect talented researchers who have returned to Romania and says, “Without [merit-based] funding, people would either give up research altogether or move out of the country”. This is an all too familiar scenario in which it is apparent that policy and science must cooperate to produce ideal outcomes. (Alexandra Nistoroiu, ScienceInsider)

Mental Health

Clinical Trials Down, Basic Research Up at NIMH

Mental health is a notoriously tricky field. The development of the Diagnostic and Statistical Manual of Mental Disorders (DSM) in the 1950s has historically been a way to diagnose patients with mental health issues, and then give appropriate treatment. This has proved to be an imprecise treatment strategy, because within a category of diagnosis there is a broad spectrum of behaviors, and underlying this behavior there may be multiple causes. The NIH’s Precision Medicine Initiative (PMI) seeks to characterize 1,000,000 people by behavior, genetics, environment, and physiology. Researchers from the NIMH will send questionnaires evaluating behavior to detect mood and reward responses for this group of people. When this mental health evaluation is combined with information about their genetics, lifestyle and environment, scientists can characterize mental health disorders more specifically.

Many clinician researchers are upset by the steep decline in clinical trial research funded by NIMH, which has become higher profile with director Joshua Gordon’s arrival in 2016. NIMH seeks to route funding to study mental disorders using a basic research approach before spending time and money on costly clinical trials which too often lead to inconclusive or disappointing results. In 2011 NIMH launched the Research Domain Criteria (RDoC), which encourages research proposals to include a hunt for the mechanism underlying mental health studies. Since the initial call to include a RDoC perspective in grant applications, the incidence of RDoC appearing in funded applications has increased while mention of the DSM has decreased. Other buzzwords that are present in funded grants include biomarker, circuit, target and mechanism.

These data represent a shift in how funding decisions will proceed in mental health but may have broader reaching implications for other areas of research. In a blog post Dr. Gordon writes, “the idea that RDoC will facilitate rapid, robust and reproducible neurobiological explanations for psychopathology (as observed within and across DSM disorders) represents a hypothesis”. It remains to be seen if RDoC is an effective metric to evaluate successful grants. (Sara Reardon, Nature News)

Have an interesting science policy link?  Share it in the comments!

Advertisements

Science Policy Around the Web – March 1, 2016

leave a comment »

By: Melissa Pegues, Ph.D.

Photo source: pixabay.com

European Science

Exit from European Union Could impact British Research

As Britain considers its future with the European Union (EU), academics worry that an exit could jeopardize British research. Scientists in the United Kingdom (UK) are concerned that acquiring funding for their work may become more difficult. There is also concern that collaborations between British scientists and researchers in other member states that have been fostered through the EU could be disrupted. Nobel Prize winner Professor Sir Paul Nurse has indicated that because ideas and people are easily shared, all EU scientists have benefited from the union. Science Minister Jo Johnson also believes it would be detrimental to the future of British research if the UK were to secede, and during remarks from an event hosted by the Royal Society stated that “the risks to valuable institutional partnerships, to flows of bright students and to a rich source of science funding mean the Leave campaign has serious questions to answer.”

It remains unclear whether or not scientific funding would be adversely affected by a British exit. Between 2007 and 2013 the UK has supplied over 78 billion Euros to the EU with 5.4 billion Euros specified for research and development. In that same time period, UK researchers have received 8.8 billion Euros from the EU for research. This amounts to approximately 16% of total research funding. However, it is unknown if the UK could still submit applications for funding if they chose to secede. Norway and Switzerland, non-EU members, do receive funding for scientific research through the EU, demonstrating that it may be possible for the UK as well. An exit would also raise questions as to how current large-scale, international collaborative efforts such as CERN and the European Space Agency will proceed. Additionally, the UK has worked with other EU member states to reform policies pertaining to clinical trials that would ease the bureaucratic burden through measures such as simplified reporting and lighter regulations where medicines are already authorized and promote sharing of data, while still protecting clinical trial volunteers. Opponents to staying in the EU, including Scientists for Britain, counter that the UK is not reliant on the EU for funding or participation in collaborative projects. Still, British researchers may lose priority to EU members when trying to access funds, and will lose their political voice in discussion of the future of these projects.

While the potential effects of a British exit from the EU remain under debate, Britons will have much to consider. A referendum has been set for June 23rd. (, BBC News)

Biotech and Intellectual Property

Illumina files suit over DNA sequencing technology

Illumina has recently filed a lawsuit against rival Oxford Nanopore Technologies arguing that technology used in Oxford Nanopore’s devices infringe upon patents held by Illumina for sequencing technology produced by researchers at the University of Washington and the University of Alabama at Birmingham. California-based Illumina, a leader in the development of technologies used for next generation sequencing (NGS), was once an investor in UK-based Oxford Nanopore Technologies, but that relationship ended in 2013 when Oxford Nanopore turned their focus towards technologies not covered by their agreement.

The suit is centered on Oxford Nanopore’s palm-sized MinION sequencer that has been hailed for its size, speed, and low cost. Although the device’s accuracy is not high enough for use in studying human genomics, the device is well-suited for reading smaller sequences and applications where data needs to be read in real time, such as diagnosing infections during epidemics. Indeed, the device was used to identify new infections during the recent Ebola epidemic in Western Africa. Although Illumina does not currently market a similar device, they argue that they have made “substantial investments” in nanopores, and that the pore used in the MinION infringes upon patents that Illumina holds for pores used to read DNA.

Oxford Nanopore was the first to commercialize nanopore technology for sequencing DNA and have planned the release of a higher-throughput device, PromethION, for later this year. If successful, Illumina’s suit could prevent Oxford Nanopore from selling their devices in the US. Some researchers, including Opinionomics author Mick Watson, worry that this could threaten the development of innovative sequencing methods.

Oxford Nanopore’s CEO, Dr. Gordon Sanghera responded to the litigation by stating that “[i]t is gratifying to have the commercial relevance of Oxford Nanopore proucts so public acknowledged by the market monopolist for NGS.” (Erika Check Hayden, Nature News)

Public Heath and Infectious Disease

Japanese encephalitis virus could have a new transmission route in pigs

Mosquitoes have recently been in the news for being potent disease vectors in diseases like Zika. However, many questions remain as to how these mosquito-borne diseases are maintained when their vectors die out over temperate months. A recent study assessing Japanese encephalitis virus (JEV) transmission, a mosquito-borne virus that is distantly related to the Zika virus, provided a surprising answer: pigs. According to the World Health Organization (WHO), the JEV causes approximately 68,000 clinical cases per year. While progression to encephalitis is rare, it can cause lifelong neurological damage or even death. It is well established that pigs act as a reservoir from which uninfected mosquitoes can acquire the virus before spreading the virus to other animals. Although this cycle was well-accepted, a natural question that arose from this paradigm is how the virus is maintained when mosquitoes are absent. The study identified that during the colder months, pigs can pass JEV to other pigs, where “the virus lingered for weeks in the pigs’ lymphatic tissue and tonsils.” This is the first time mosquito-free transmission of the virus has been documented in pigs, but remains to be further validated on the farms where natural transmission occurs. Interestingly, a vaccine does exist for this virus for both humans and pigs. Implementation of this vaccine has proven difficult, since “it’s not cost-effective to vaccinate pigs because they breed and turn over so quickly.” As such, the WHO suggests on their site “that JE vaccination be integrated into national immunization schedules in all areas where JE disease is recognized as a public health issue.” (Laurel Hamers, Science News)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

March 1, 2016 at 9:00 am