Science Policy For All

Because science policy affects everyone.

Posts Tagged ‘gene drive

Science Policy Around the Web – February 26, 2019

leave a comment »

By: Jennifer Patterson-West, Ph.D.

Source: Ellsworth Airforce Base

Scientists Release Controversial Genetically Modified Mosquitoes In High-Security Lab

Malaria is a parasitic disease that affects more than 200 million people each year.  Symptoms can range from mild to severe, and include high fever, chills, and flu-like symptoms.  These symptoms are more dangerous to children under the age of 5, which account for 77% of related deaths.

The life cycle of malaria requires two hosts: humans and female Anopheles mosquitoes.  It is important to note that not all species of Anopheles mosquitoes are good vectors, in fact, only 30-40 of the approximately 430 species transmit malaria in nature. The life cycle of malaria is also dependent on additional environmental factors including ambient temperature and humidity. Together these factors account for the geographic distribution of malaria. Although malaria is found more than 100 countries, transmission is most prevalent in Sub-Saharan Africa and in parts of Oceania including Papua New Guinea. 

In the past decade, major gains have been made to control the disease in developing nations thanks to increased funding. Current preventative measures include insecticide-treated netsindoor residual spraying, and intermittent preventative treatment for individuals at increased risk including pregnant women and infants.

In early February, a high-security laboratory in Terni, Italy launched a study to evaluate a new powerful weapon against the mosquito vector.  This new weapon is a genetically modified mosquitothat can spread a genetic mutation lethal to its own species. Researchers targeted the gene “doublesex” to producing female mosquitos that are sterile and have mouths resembling male mosquitos, which are unable to bite.  

The goal is to dramatically crash or reduce the local population of the main species of malaria spreading mosquitoes, Anopheles gambiae. To increase heritability of the mutation, researchers utilized CRISPR technology to engineer a “gene drive” into the genetically modified species. Gene drive inheritance ensures that nearly all progeny inherits the mutation.

Despite the need for new methods for reducing malaria, activists and other scientists warn that the technology can have unforeseen effects on the environment.  The environmental group, Friends of the Earth, is part of international coalition protesting the use of these new genetically modified organisms. Jim Thomas of the ETC group, has noted concern that gene drive technologies can also be used to develop biological weapons.  

To reduce the risk associated with releasing the gene-drive mosquitoes, the project plans years of additional study that will methodically and cautiously evaluate the mosquitoes and their potential environmental impacts with close consultation from other scientists, government officials, and local residents in Africa.

(Rob Stein, NPR)

With one manufacturer and little money to be made, supplies of a critical cancer drug are dwindling

Bacillus Calmette-Guerin (BCG) is a potent immunotherapy for the treatment of fast-growing bladder cancer.  BCG was initially used in 1921 as a tuberculosis vaccine.  In the 1970s, BCG was shown to stimulate the immune system to attack tumor cells when administered through a catheter into the bladder of cancer patients. Since then, BCG has become a potent treatment for intermediate and high-risk non-muscle invasive (NMI) urothelial cancer (UC) of the bladder.

Bladder cancer is the nation’s sixth most prevalent cancer with approximately 80,000 new cases each year.  About 20% of these patients are diagnosed with a type of bladder cancer that can be treated with BCG.  Although BCG doesn’t work for all eligible patients, the response rate is more than 70%.

Despite the established potency of BCG, there is a critical national shortage.  Supplies of BCG have been erratic since 2011, when the United States Food and Drug Administration (FDA) promptly shut down the Sanofi manufacturing lab after a failed inspection.  After continued regulatory issues, Sanofi stopped production of BCG in 2016. Merck is now the only manufacturer of BCG for the Unite States and European markets.

Merck has acknowledged short supplies and indicated that they are currently working at capacity.  Tyrone Brewer, the vice president of global oncology marketing at Merck, has indicated that the company intends to continue producing BCG for “the foreseeable future.”

During shortages, chemotherapies, such as mitomycin, can be used as alternative therapies.  However, they have lower efficacy and a higher price tag than BCG. During the 2014 BCG shortage, the cost of mitomycin increased by 99% further exacerbating the financial burden of these alternative therapies. 

In response to erratic supply of BCG, the Southwest Oncology Group has launched a clinical trial (S1602) to compare the TICE BCG strain currently used in the United States to the Tokyo Strain.  The FDA will consider the results of this trial as critical information for approving the Tokyo strain for use in the United States. 

In the meantime, urologists have begun to divide dosages into thirds to prolong supplies.  However, a recent literature review indicated that a large scale, well-designed, prospective study is need to establish a standard dose and maintenance instillation for reducing recurrence rate since the efficacy of lower dosage is unclear from existing data.

The University of Utah Drug information Service reported that in 2015 approximately 265 generic drugs were in short supply in the United States.  Of potentially greater concern than the current shortage of BCG are generic drugs that can have immediate life and death consequences. For instance, a retrospective study of the norepinephrine shortage in 2011 indicated a 10% higher mortality rate during hospitalization when the alternative vasopressor, phenylephrine was used.

A recent perspective from Davies et al. argues that current policy efforts have not sufficiently prevented supply disruptions of important generic drugs.  A major consideration for dealing with generic drug shortages are the unintended consequences of current policies. For instance, the 2003 Medicare Modernization Act, which sought to protect consumers by limiting the cost increase for generic drugs to 6% above the Medicare average sale price (ASP). This restriction may not provide manufactures with sufficient proficient to invest in production facilities.  

Further compounded these issues is the fact that manufacturers face few negative consequences during shortages, whereas an excess in supply cuts in to profit margins. To provide additional incentive for maintaining reliable supplies of generic-drugs, Davies et al. suggested that the FDA prioritize the review of future generic-drug applications from companies that “maintain generic drug production without quality-control problems”.  In November, the FDA issued a news release about efforts to address drug shortages, which included remedying the underlying problems when a shortage arise within their current authorities.  In today’s political climate, any policy reform or expanse to FDA’s authority to mitigate future shortages and provide incentives for the production of generic medications will require cross-party support. 

(Meghana Keshavan, STAT news)

Have an interesting science policy link? Share it in the comments!

Advertisements

Written by sciencepolicyforall

February 26, 2019 at 1:44 pm

Science Policy Around the Web – November 28, 2017

leave a comment »

By: Patrice J. Persad, PhD

20171128_Linkpost

source: pixabay

Mental Health

Brain Patterns May Predict People at Risk of Suicide

Suicide is the second common cause of death for adults under 27 years old in the United States. In light of this, being able to identify individuals who are more likely to attempt suicide may transform suicide prevention initiatives’ outcomes.

At the end of last month, scientists published that machine learning (ML) algorithms were able to yield accurate prognoses by using functional magnetic resonance imaging (fMRI) profiles to differentiate subjects with suicidal thoughts (17 cases) and those without (17 controls) . After being exposed to a display of thirty words classified as positive (some examples: “kindness,” “carefree,” and “innocent”), negative (some examples: “guilty,” “evil,” and “gloom”), or pertaining to suicide (some examples: “lifeless,” “hopeless,” and “apathy”), each participant’s brain activity, or “neural signature”, for each word was captured by fMRI.

The accuracy of predicting individuals who had experienced suicidal thoughts was calculated as 91%. Upon stratifying the cases, a portion of those who had experienced suicidal thoughts were successfully identified as having attempted ending their lives in the past (nine out of 17). From categorizing individuals by suicide attempt status, the ML algorithm’s predictions were 94% accurate. The study’s authors envision clinical applicability, including improving patient surveillance, which could impact the suicide rate and lead to treatment or therapies concentrating on the cerebral areas identified by the algorithm. However, the researchers counsel that the study must be replicated with more subjects, particularly across different demographic groups and including individuals that have been diagnosed with psychiatric disorders but do not experience suicidal thoughts.

Various ethical concerns are raised by the application of this research, including the complications surrounding valid consent and how the life insurance industry could use the data. Classification of potential thoughts by ML may intrude privacy beyond what volunteers may feel they are consenting to when they agree to be recorded by fMRI or similar technologies. Neural signature classification in patients may have secondary uses, which can expand outside of medicine and healthcare areas, and must be evaluated. Misuse by life insurance companies, inviting discrimination against candidate insurance policy holders because of true and false classification of suicide ideation from fMRI, is a hypothetical scenario.

(Jon Hamilton, National Public Radio)

Species Conservation

‘Gene Drives’ Are Too Risky for Field Trials, Scientists Say

Consider the following illustration. On the island of New Zealand, a clan of non-native stoats, short-tailed weasels, are pulverizing numbers of the endemic takahes, flightless birds. Settlers in the 1800s had set stoats free through the terrain to prey on the rabbits, disturbers and unwanted consumers of agricultural crops. Thus, the stoat in this case may have been thought of as posts in a living rabbit-proof fence. Consequently, impacts on the native ecosystem were and are negative underlining the decline in and harm to takahes and other flightless bird species, such as the kiwi, New Zealand’s national bird. This currently heralds the question “How can population sizes of invasive species, such as these stoats, be reduced?”

A proposed solution to the aforementioned question features the germline genome editing system CRISPR to introduce genetic elements designed to undermine the reproductive success of a particular species. The idea of a gene drive system is to increase the inheritance, or frequency, of a particular variation in a gene. The CRISPR system can be applied to introduce variation in a gene essential for a given species’ reproductive system. When an animal carrying a CRISPR edited copy of a gene mates with an animal carrying a functional copy of the gene, their offspring will inherit one altered copy and one regular copy. Eventually, as this genetic variation becomes frequent enough, two individuals carrying the altered copy are likely to mate, producing infertile offspring. Then the number of invasive species’ members, the stoats for example, would drop as a result.

Are there any caveats to the CRISPR-based gene drive system for species conservation? A research team headed by Kevin M. Esvelt, the first proposer of gene drives for wild populations, used population models and stimulations to revealed a vital finding: if several gene-drive-modified organisms of an invasive species came into contact and bred with wild-type organisms of the same species, the population of the species as a whole in its native habitat would decrease over time. In other words, the encounter between a wild-type organism and gene drive organism is inauspicious if mating transpires in the species’ native habitat. Based on these findings, the researchers stressed prudence in initiating this application in field studies, which echoed discussions lead by the National Academy of Sciences in 2016.

One alternative may be to engineer gene drives to deteriorate after a certain number of generations. However, according to Esvelt in the context of eradicating vector-borne diseases, such as malaria, restricted gene drive systems affecting only several generations (out of many) may be ineffective in vector populations.

Although the opening example’s setting is New Zealand, the future development and employment of CRISPR-based gene drive systems depend on international cooperation plus participation because other nations may experience the impact of an ecosystem beyond their designated borders. For formulating proper safeguards before field testing commencement, voices from the scientific community, political arena, general community, and other domains across potentially affected countries must be amplified and heard for maximizing the protection of all species.

(Carl Zimmer, New York Times)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

November 28, 2017 at 7:03 pm

Science Policy Around the Web – August 5, 2016

leave a comment »

By: Fabrício Kury, MD

Genetic engineering

‘Gene drive’ organisms should be tested in field trials, not widely released, experts say

While the Zika virus shows spread into the US, with mosquito-borne transmission having been reported in Miami, the scientific community is eager to kick-start the use of the new biotechnology called Gene Drive. This technique allows for the creation of genes that cheat the trial of chance and get passed on to nearly 100% of the offspring. This way, it is possible to alter the genome of entire populations of species, for example, by making populations of Aedes mosquitoes unable to transmit the Zika or Malaria viruses — if not plainly kill all the Aedes.

The danger of Gene Drive is our lack of knowledge about the impact of drastic alterations in the behavior or biology of one species, and also the consequences from the quick removal of a pervasive species from an ecosystem. The slow progress of Zika into the U.S. through warmer and wetter edges such as Florida and Puerto Rico seems like a window of opportunity for attacking the spread of the disease while it is still relatively isolated. However, the National Academies of Sciences, Engineering and Medicine call for tightly controlled experiments before wide use of the gene drive. As MIT Media Lab professor Kevin Esvelt put it, “there is a nontrivial chance that [the genes] will spread from a single organism released into a wild population into most or all members of the local population — and very possibly into every population of the target species around the globe.” (Ike Swetlitz, STAT news)

Technology and Healthcare

Why lawmakers are trying to make ransomware a crime in California

Ransomware is a type of malware (a “virus”) that can make money for a hacker very quickly. The ransomware program encrypts files in the target computer, then demands a ransom, usually to be paid in cryptocurrency (the most popular is Bitcoin) which can be hard to track, to release the key that decrypts the files. Hospitals are perfect targets for ransomware attacks because they are often big institutions, are mostly unprepared to defend themselves against cybercrime, and hold precious data in its computers. Most often, ransomware makes the system of computers functionally “locked inside a black box” or completely unable to be used, creating mounting losses and outright risks that outweigh the price of the ransom.

This includes the medical data that is kept private inside those computers and becomes locked behind the ransomware’s military-grade encryption. Other times, the cyberattack consists of “kidnapping the privacy” of the patients. Here the hacker makes a copy of the data and requests a ransom not to release it to the public. In 2015 alone, 113 million patients had some or all of their health records stolen, and the hospital hacks showed increase of 600%. It has been called “The Year of the Hospital Hack.” Moreover, according to the FBI, ransomware as a broader industry is on the rise. In the first three months of 2016, victims of ransomware lost more than $209 million, compared to $25 million in the entire 2015. (Jazmine Ulloa, Los Angeles Times)

Affordable Care Act Effects

How I Was Wrong About ObamaCare

The strategy implemented by the Patient Protection and Affordable Care Act (PPACA, “ObamaCare”) for the purpose of controlling health care costs is one that strives for paying for healthcare by value provided instead of service provided. The promoted understanding, as summarized by former health policy advisor to the Obama administration Dr. Ezekiel Emanuel, 2011, is that such force will pressure the health care industry to undergo vertical consolidation into Integrated Delivery Systems. These systems, whose likes could be named as Kaiser Permanente, Geisinger Health Care System, and Intermountain Healthcare, are consolidations of all types of providers (physician, imaging, therapy, nursing, surgery, home care, specialty care etc.) and strives to be at least internally coordinated to provide the best value per cost, since its payment is not completely tied to the number of procedures or services performed.

Two PPACA-derived value-based reimbursed programs were launched in 2012 — the smaller and more cautious Pioneer Accountable Care Organizations, reserved for groups of providers with more experience in integrated health care delivery, and the larger and more ambitious Shared Savings Program Accountable Care Organizations. Their data has been released along the past year. The data shows that, along the first performance year of the Medicare Shared Savings Program, 58 ACOs generated $705 million in savings, feat which earned them $315 in bonuses as per the program’s workings, leaving net $260 million in savings to CMS. In April this year, the first study of the official CMS claims data indicated that the better savings were among the ACOs classified as small groups of providers. This is understood as evidence against the “Kaiserification” of healthcare as envisioned by Dr. Emmanuel, since the savings come not from having all providers as employees of a big conglomerate, but instead in giving more autonomy and power to the health care provider at the forefront of the contact with the patient. (Bob Kocher, Wall Street Journal)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

August 5, 2016 at 11:00 am

Science Policy Around the Web – February 2, 2016

leave a comment »

By: Agila Somasundaram, Ph.D.

Map representing scientific collaborations from 2005 to 2009 using data from Scopus. International cooperation. Credit: Computed by Olivier H. Beauchesne and Scimago Lab

Science Policy on a Global Scale

Global science engagement

The American Association for the Advancement of Science (AAAS) will have its annual meeting in Washington DC, from 11 to 15 February 2016. World leaders in science and policy will discuss major challenges, such as food security and health, facing the global community. Dr. Geraldine Richmond, President of the AAAS, says that nations need to employ ingenious ways to find solutions to the ever-increasing demands for food, energy, water, and a healthy environment, which are complex and interconnected problems. Dr. Richmond emphasizes the importance of international research partnerships and innovative approaches that assimilate perspectives and lessons from all over the world, including the developing countries. Such ‘Global Science Engagement’ will be the focus of this year’s AAAS meeting. Dr. Richmond cautions that isolationist views that undervalue international initiatives are unwise. For example, the United States spends billions of dollars providing clean drinking water to its people, but 90 percent of that water is flushed down the drain. Valuable lessons could be learnt from countries such as Namibia where recycled water has been consumed since 1969 with no adverse health consequences. Diversity in opinions, ideas, and experiences is essential to furthering creativity and innovation that is required to solve complex global problems. But scientists in developing countries face difficulties connecting with their peers in more advanced nations, for e.g. due to limited journal access, and people in the United States who are interested in global engagement have limited ways to do so. While commending the efforts of AAAS and other scientific societies in facilitating international engagements, Dr. Richmond calls for more efforts and commitment to strengthen such collaborations. (Geraldine Richmond, Science)

Zika Virus

New Weapon to Fight Zika: The Mosquito

The Zika virus is rapidly spreading in the Americas, and has been linked to a severe defect in brain development, microcephaly, in babies. The Zika virus is spread by mosquitoes, mainly the Aedes aegypti species, which also transmits deadly infections such as chikungunya, yellow fever and dengue fever. Efforts to develop vaccines against the virus are underway, but it may take many years, even a decade, before an effective vaccine can be given to the public. Experts argue that new methods are needed since the traditional ones, involving insecticides and reducing stagnant water to prevent mosquito breeding, aren’t enough.

The British company Oxitec has developed genetically engineered mosquitoes that transmit a lethal gene to their progeny, which die before reaching adulthood. These engineered mosquitoes have been successfully used to lower mosquito populations by more than 80 percent in certain parts of Brazil. Oxitec says this is an ecologically friendly approach because only one species is targeted, as opposed to chemical spraying that affects many organisms. But the release of genetically modified organisms into the environment has met with opposition. Another approach is to infect the mosquitoes with the bacterium Wolbachia, which makes it harder for the mosquitoes to transmit viruses. The bacteria can be passed through eggs, making this a self-sustaining method. Initial results in Brazil appear promising, encouraging trials on a larger scale. A third powerful approach is the use of gene-drives. Gene-drives allow for the propagation of a desired trait, for e.g. sterility, through a wild population. Though gene-drives have been tested in laboratory scales, it might be not so easy to deploy it in public yet, mainly because of concerns that it would be very difficult to reverse things if something undesirable happens.

Remarking on the three approaches, Dr. Peterson, Centers for Disease Control and Prevention, said, “We don’t know about the efficacy of any of them on a wide enough scale… For now, we’ve got to deal with what we have.” Experts say that the traditional methods of mosquito control need to be intensified, till we have proven the large-scale efficacies of the new approaches and/or developed an effective vaccine. (Andrew Pollack, The New York Times)

Scientific Integrity

How cases like Flint destroy public trust in science

While the Flint water crisis is being investigated, disturbing reports emerge about how studies that showed a problem in Flint’s drinking water were dismissed. In Fall 2015, a team of researchers in Virginia Tech, led by Dr. March Edwards, examined the lead content of drinking water in Flint homes. The study revealed that the 90th percentile reading was 27 parts per billion. The Environmental Protection Agency considers 5 parts per billion a cause for concern, and 15 parts per billion as the limit above which the problem should be fixed. However, tests conducted by the city showed lead levels within safe limits. The Michigan Department of Environmental Quality responded saying that the state was perplexed by the study results, but not surprised, given that Dr. Edwards’ “group specializes in looking for high lead problems.” According to reports, the city’s water testing results had been “revised by the Michigan Department of Environmental Quality to wrongly indicate the water was safe to drink.” The state officials attempted “to use power instead of logic and scientific reasoning to defend and hide their actions,” says Dr. Edwards. Similarly, studies done by Dr. Mona Hanna-Attisha, pediatrics program director at Michigan’s Hurley Medical Center, were also initially criticized. Her study showed that the percent of children with elevated blood lead levels doubled, or tripled in some areas, after the change in water source. When the state later analyzed its data using the same approach as Dr. Hanna-Attisha, the results matched.

Dr. Naomi Oreskes, science historian at Harvard University, says that though these events may not classify as “science denials,” they constitute a less-defined category of “no one likes bad news.” “Why didn’t government officials take it seriously when scientists tried to raise an alarm?” she asks. When government officials responsible for people’s safety commit acts like these, it crushes the public’s faith in science, and exacerbates problems such as denial of climate change or the safety of vaccination. How do we prevent problems like Flint from reoccurring? The answer is not clear yet, but some suggestions include conducting better checks and balances by independent researchers not affiliated with the government, and not overlooking the role of universities in protecting public welfare. According to Dr. Aron Sousa, the work by Edwards and Hanna-Attisha should reinforce the public’s faith in good science. (Chelsea Harvey, The Washington Post)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

February 2, 2016 at 9:00 am

Evolution provides us with many genetic power tools – how do we use them wisely?

with 2 comments

By: Daniël P. Melters, Ph.D.

The Red Queen Hypothesis in evolutionary biology: “Now, HERE, you see, it takes all the running YOU can do, to keep in the same place.” (Lewis Carroll, “Through the Looking Glass”)

DNA is a very ubiquitous molecule, sufficient to span the observable universe at least 20 times. Most of this DNA comes from viruses, either in the form of active viruses or in its inactive form incorporated in viral, bacterial, plant, fungal, and animal genomes. To limit the spread of viruses, it is not surprising that evolution has created many ways to contain the spread of these inactivated viruses. We have adopted some of these antiviral mechanisms for our own use.

The discovery of the first bacterial antiviral system, the restriction enzyme, led to the founding of Genentech and thereby the modern biotechnology industry. Despite the ease with which restriction enzymes can be used to cut and paste pieces of DNA together, they are currently limited to use in test tubes (in vitro).

A few years ago, a new genetic tool was discovered that could modify genetic material in living creatures (in vivo). Again, it was a bacterial anti-virus mechanism. This new technology is called CRISPR and its in vivo use brings with it the possibility to edit DNA in order to correct genetic diseases in patients themselves. Just as a slew of restriction enzymes with unique cutting characteristics have been found, a similar scenario seems to be happening with CRISPR with the discovery of more nucleases used to cut specific DNA sequences. The original nuclease used with CRISPR is cas9, but recently another nuclease (cpf1) was discovered. Where cas9 is efficient in deleting genes, cpf1 seems to be good for making small modifications. In the foreseeable future more cas9-like nucleases will be discovered, each with potentially their own unique characteristics, in addition to ongoing efforts to genetically engineer a better cas9 nuclease.

Ethical questions about the use of CRISPR in humans, especially in human sperm and eggs, have arisen. On December 1-3, 2015, the U.S. National Academy of Sciences in collaboration with the Chinese Academy of Sciences and the UK Royal Society, hosted a three-day international summit on the use of CRISPR in human embryos. Although germline editing is strongly discouraged pending continued technological and ethical deliberations over the next few years, it remains a scientific possibility. Based on a single Chinese study, it is still unclear if this route is realistic. After all, cloning mammals has proven much harder than feared in the 1990s, as has creating a petrol-producing algae by genetic editing. Nevertheless, this has not stopped genetic entrepreneurs like Google and Bill Gates from jumping on the CRISPR bandwagon to kick-start the second revolution in biotechnology. One big unknown factor that still remains looming over the development of both the technology and any regulation is the potential misuse of any do-it-yourself CRISPR kits.

In addition to making individual genetic changes at will like those with CRISPR, forces that work on population genetics can be employed. Again they have their roots in evolution. One such potential powerful force is gene drive. Gene drive is caused by a genetic sequence that does not obey the Mendelian inheritance rules (where there is a 50-50 shot for a gene to be passed on from parent to offspring). It is therefore possible to introduce a gene that could, for example, get rid of the malaria parasite by introducing a few GMO mosquitoes into a population of natural mosquitoes. Through gene drive over time the entire population of mosquitoes will carry the malaria-fighting gene. The implication would be that the malaria parasite would not be able to passed on to humans and thus malaria would be eradicated. This sounds like a dream scenario!

However, using gene drive on mosquitoes to eradicate malaria does open a new can of worms. Both for the good – as the need to fumigate would be reduced also reducing the creation of fumigation-resistant insects, including mosquitoes – and for the bad, namely unwanted ecological consequences as a result from for instance horizontal gene transfer. Another unwanted consequence of the gene drive technology would be the near-certainty that it will spread across political borders. To handle such foreseeable international disputes, international regulatory collaboration will be required. One solution to overcome these unwanted consequences of gene drive could be use genetically engineered mosquitoes that would not be able to produce any off spring.

Whatever happens on the side of technology development, genetically modifying organisms remains controversial for the time being. Just think about the hype surrounding the recent FDA approval (after 19 years) of faster-growing “Frankenfish” for human consumption. Part of the problem resides in the highly technical details and extensive use of jargon that permeate the biological sciences. At times, it can be challenging for even scientists to keep up with the fast pace of development in the field of genetics. Once can only imagine what must then be demanded of the public and policy makers. Just look at what CRISPR itself stands for: clustered regularly interspaced short palindromic repeats. From the acronym alone, it is not clear what CRISPR does or means. Only through extensive communication between scientists and the public can a bridge be made that allows for exchange of knowledge about both the technical details and sincere concerns. The absence of many scientists on social media does not help this and actually widens the knowledge gap.

Nevertheless, various scientists have raised their voices about the potential power of gene drive as well as their professional concerns. Sure, gene drive can be used to do many things such as immunize animals that carry human diseases, control insect-borne diseases, spread pest-specific pesticides and herbicides, reduce populations of rodents and other pests, control invasive species, and aid threatened species. Yet, the power of gene drive also brings with it the fear for the unknown. What happens if a gene “goes wild” and crosses the species barriers through horizontal gene transfer? Will we be able to detect this quick enough to control it? What damage will it do if we can’t control it? Will there be any damage? For instance, cross-pollination between GMO crops and natural variants has been observed, albeit their incidences are relatively low and its broader ecological effect mostly unknown. To help curb these concerns, some solutions have been brought forward to help contain gene drive such as by designing it like Lego pieces, where only a complete set would be functional.

These concerns were considered so great that the U.S. National Academy of Sciences felt the need to create a workshop focused specifically on gene drive, in addition to the earlier international summit about the ethics of human genome editing. In short, the meeting showed that while gene drive has potential promises, both scientific and regulatory uncertainties remain, as well as fear about its potential irreversibility if it were to go wild. In other words, more research is needed covering all aspects of gene drive, including educating the public across the globe about the pros and cons.

Just as atomic energy produces both electricity and atomic bombs, thereby bridging the worlds of physics and societal needs, bacterial immune systems and evolutionary forces bridge basic biological research with applied biotechnologies. Society as a whole is moving more and more towards a society where genetics is a driving force for change – in medicine, global health, agriculture, pest-control, the judicial system and in combating terrorism. Understanding the basic principles of biology, genetics, and evolution are a must for policy makers of today and even more so of tomorrow. How else will they be able to support or debate a bill that is guided by or deals with genetic information and manipulation? After all, selective breeding and building a highly interconnected world have resulted in new species (of pets, livestock, and crops) and forced other species to adapt to changes in the environment we made (such as geographical barriers like roads and deforestation, and climate change). Therefore, careful ethical consideration of the wise use of powerful genetic tools and forces is critical, both for use in human, as well as any potential ecological implications. Gene drive as a tool has great potential, since after all, most of the DNA on earth came from the driving forces of selfish genetic elements. Evolution has provided us with many powerful tools and with great power comes great responsibility.

Written by sciencepolicyforall

December 9, 2015 at 9:00 am