Science Policy For All

Because science policy affects everyone.

Posts Tagged ‘GMO

Science Policy Around the Web – February 24, 2017

leave a comment »

By: Alida Palmisano, PhD

Source: usda [Public domain], via Wikimedia Commons

Public Access to Data

Lawsuit Aims to Force USDA to Repost Scrubbed Animal Welfare Records

“Put the records back on the internet.”

An article published in Science discusses a lawsuit filed on February 13 against the U.S. Department of Agriculture (USDA) by an animal law expert at Harvard University. According to the plaintiffs, USDA violated the federal Freedom of Information Act (FOIA) when it removed thousands of animal welfare inspection reports and other records from a publicly accessible website. USDA generated records that document animal facility inspections, enforcement actions, animal censuses, and other information collected by the agency in the course of enforcing the federal Animal Welfare Act.  The law covers animals in more than 7800 facilities, including zoos, roadside circuses, and research laboratories at government agencies and academic medical centers.

The decision to remove the public access to these records may have been a response to a lawsuit involving another law, the Horse Protection Act. The plaintiffs in a 2016 Texas lawsuit accused USDA of violating their rights under the Privacy Act by posting inspection documents required by the Horse Protection Act. A resulting USDA review of all its public postings led the agency to scrub from its website documents generated under both the Horse Protection Act and the Animal Welfare Act.  In the future, the agency announced, people who want access to those records will need to file a FOIA request. The agency’s most recent FOIA report states that it takes an average of 94 days for the agency to respond to a simple FOIA request and 234 days on average for more complicated requests.

In February 13’s lawsuit, the plaintiffs invoke a section of FOIA that requires agencies to make publicly available electronically all records that it has released under FOIA which “because of the nature of the subject matter, the agency determines have become or are likely to become the subject of subsequent requests for substantially the same records.” (Meredith Wadman, ScienceInsider)

Science and Immigration

Grad Students, Postdocs with U.S. Visas Face Uncertainty

While U.S. courts are busy handling President Donald Trump’s travel ban on immigration from seven majority-Muslim countries, the temporary shut down of the executive order, the appeal to reinstate the travel ban, the rejection of the immediate restoration of the ban, and more appeals and rulings, graduates and postdoctoral students already in the United States are weighing their options and trying to plan rationally in an unpredictable and fluid situation.

Many scientists in the U.S. are on student or other working visas. All these visas may not be renewable, depending on future executive orders and regulations. The dilemma “simply ruins their future. It’s a catastrophe,” says a Yemeni biologist who is on a university faculty on an H-1B, a 3-year visa for professionals. For years, lawmakers in Washington have tried to reform abuses of visa regulations by companies using visas to bring workers to the U.S. to learn the ropes, and then send the trained workers to other countries where the job can be done cheaply. The H-1B system is contentious: on one side labor advocates want the exploitation of the H-1B system to stop supporting an outsourcing business model. On the other hand, tech companies like Google and Facebook say they can’t get enough visas for top foreign talent, as the cap on the number of H-1Bs issued every year means that sometimes foreign graduates from top U.S. universities, places like the Massachusetts Institute of Technology and the University of California, Berkeley, can’t get one. The travel ban already has harmed the top universities in the U.S., stranding students, faculty and scholars abroad, and making foreign schools more attractive to some of the world’s brightest students.

In papers filed in Brooklyn federal court, the schools (that include Columbia, Duke, Harvard, Johns Hopkins, Princeton, Stanford, Yale, Massachusetts Institute of Technology and several more) said that the order blocking travel from seven predominantly Muslim countries threatens their abilities to educate future leaders from every continent. They said the executive order has “serious and chilling implications” and that the ban “casts doubt on the prospect and value of studying and working here for everyone,” the papers said. (Meredith Wadman, Richard Stone, Science)

Genetic Engineering

US Science Advisers Outline Path to Genetically Modified Babies

“Scientists should be permitted to modify human embryos destined for implantation in the womb to eliminate devastating genetic diseases such as sickle-cell anaemia or cystic fibrosis — once gene-editing techniques advance sufficiently for use in people and proper restrictions are in place. That’s the conclusion of a 14 February report from the US National Academies of Science, Engineering, and Medicine.”

The report follows a 2015 National Academies summit between scientists, ethicists, legal experts and patient groups from around the world. At the time of the meeting, given the outstanding scientific, ethical and legal questions surrounding the issue, the organizers concluded that scientists shouldn’t yet perform germline editing on embryos intended for establishing a pregnancy. However, the organizers also stated that altering human embryos for basic research was acceptable.

The latest iteration of this ongoing CRISPR debate moves the bar a little further. The report recommends restricting the technique to severe medical conditions for which no other treatment exists. Eric Lander, president of the Broad Institute of MIT and Harvard, said, “It’s a very careful, conservative position that’s just a little bit beyond an absolute bar.” In the report, the committee also called for international cooperation, strict regulatory and oversight framework, public input into decisions and long-term follow-ups of children who have edited genomes. The report adds that for now, genome editing should not be used for human enhancement, such as improving a person’s intelligence or giving them super-strength.

The report drew immediate criticism from a California-based non-profit organization called the Center for Genetics and Society. “This report is a dramatic departure from the widespread global agreement that human germline modification should remain off limits,” said Marcy Darnovsky, executive director of the center. “It acknowledges many of the widely recognized risks, including stigmatizing people with disabilities, exacerbating existing inequalities, and introducing new eugenic abuses. Strangely, there’s no apparent connection between those dire risks and the recommendation to move ahead.” (Sara Reardon, Nature)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

February 24, 2017 at 11:23 am

Genetically Modified Animal Vectors to Combat Disease

leave a comment »

By: Sarah L Hawes, PhD

Mosquito larvae: ©ProjectManhattan via Wikimedia Commons

Diseases transmitted through contact with an animal carrier, or “vector,” cause over one million deaths annually, many of these in children under the age of five. More numerous, non-fatal cases incur a variety of symptoms ranging from fevers to lesions to lasting organ damage. Vector-borne disease is most commonly contracted from the bite of an infected arthropod, such as a tick or mosquito. Mosquito-borne Zika made recent, regular headlines following a 2015-2016 surge in birth defects among infants born to women bitten during pregnancy. Other big names in vector-borne disease include Malaria, Dengue, Chagas disease, Leishmaniasis, Rocky Mountain spotted fever and Lyme.

Vaccines do not exist for many of these diseases, and the Centers for Disease Control (CDC) Division of Vector-Borne Diseases focuses on “prevention and control strategies that can reach the targeted disease or vector at multiple levels while being mindful of cost-effective delivery that is acceptable to the public, and cognizant of the world’s ecology.” Prevention through reducing human contact with vectors is classically achieved through a combination of physical barriers (i.e. bed nets and clothing), controlling vector habitat near humans (i.e. dumping standing water or mowing tall grass), and reducing vector populations with poisons. For instance, the Presidential Malaria Initiative (PMI), initiated under President Bush in 2005, and expanded under President Obama, reduces vector contact through a complement of educating the public, distributing and encouraging the use of bed nets, and spraying insecticide. Now a 600 million dollar a year program, PMI has been instrumental in preventing several million Malaria-related deaths in the last decade.

But what if a potentially safer, cheaper and more effective solution to reduce human-vector contact exists in the release of Genetically Modified (GM) vector species? Imagine a mosquito engineered to include a new or altered gene to confer disease resistance, sterility, or to otherwise impede disease transmission to humans. Release of GM mosquitos could drastically reduce the need for pesticides, which may be harmful to humans, toxic to off-target species, and have led to pesticide-resistance in heavily-sprayed areas. Health and efficacy aside, it is impossible to overturn or poison every leaf cupping rainwater where mosquitos breed. GM mosquitos could reach and “treat” the same pockets of water as their non-GM counterparts. However, an insect designed to pass on disease resistance to future generations would mean persistence of genetic modifications in the wild, which is worrisome given the possibility of unintended direct effects or further mutation. An elegant alternative is the release of GM vector animals producing non-viable offspring – and this is exactly what biotech company Oxitec has done with mosquitos.

Oxitec’s OX513A mosquitos express a gene that interferes with critical cellular functions in the mosquitos, but this gene is suppressed in captivity by administering the antibiotic tetracycline in the mosquitos’ diet. Release of thousands of non-biting OX513A males into the wild results in a local generation of larvae which, in the absence of tetracycline, die before reaching adulthood. Release of OX513A has proven successful at controlling mosquito populations in several countries since 2009, rapidly reducing local numbers by roughly 90%. Oxitec’s OX513A line may indeed be a safe and effective tool. But who is charged with making this call for OX513A and, moreover for future variations in GM vector release?

Policy governing use of genetically modified organisms must keep pace with globally available biotechnology. Regulatory procedures for the use of GM vector release are determined by country, and there is a high degree of international policy alignment. The Cartagena Protocol on Biosafety is a treaty involving 170 nations currently (the US not included) that governs transport of “living modified organisms resulting from modern biotechnology” with potential to impact environmental or human health. The World Health Organization (WHO) and the Foundation for the National Institutes of Health (FNIH) published the 2014 guidelines for evaluating safety and efficacy of GM mosquitos.

Within the US, the 2017 Update to the Coordinated Framework for the Regulation of Biotechnology was published this January in response to a solicitation by the Executive Office of the President for a cohesive report from the Food and Drug Administration (FDA), Environmental Protection Agency (EPA), and US Department of Agriculture (USDA). Separately, biotech industry has been given fresh guidance on whether to seek FDA or EPA approval (in brief):  if your GM product is designed to reduce disease load or spread, including vector population reduction, it requires New Animal Drug approval by FDA; if it is designed to reduce pest population but is un-related to disease, it requires Pesticide Product approval by EPA under the Federal Insecticide, Fungicide, and Rodenticide Act.

Thus, for a biotech company to release GM mosquitos in the US with the intent of curbing the spread of mosquito-borne disease, they must first gain FDA approval. Oxitec gained federal approval to release OX513A in a Florida suburb in August 2015 because of FDA’s “final environmental assessment (EA) and finding of no significant impact (FONSI).” These FDA assessments determined that the Florida ecosystem would not be harmed by eliminating the targeted, invasive Aedes aegypti mosquito. In addition, they affirmed that no method exists for the modified gene carried by OX513A to impact humans or other species. Risks were determined to be negligible, and include the accidental release of a few, disease-free OX513A females. For a human bitten by a rare GM female, there is zero risk of transgene transfer. There is no difference in saliva allergens, and therefore the response to a bite, from GM and non-GM mosquitos. In addition, as many as 3% of OX513A offspring manage to survive to adulthood, presumably by spawning in tetracycline-treated water for livestock. These few surviving offspring will not become a long-term problem because their survival is not a heritable loop-hole; it is instead analogous to a lucky few mosquitos avoiding contact with poison.

Solid scientific understanding of the nature of genetic modifications is key to the creation of good policy surrounding the creation and use of GMOs. In an updated draft of Guidelines For Industry 187 (GFI 187), the FDA advises industry seeking New Animal Drug Approval to include a molecular description of the intentional genetic alteration in animals, method for alteration, description of introduction to the animal, and whether the alteration is stable over time/across generations if heritable, and environmental and food safety assessments. Newer genomic DNA editing techniques such as CRISPR offer improved control over the location, and thus, the effect of genetic revisions. In light of this, the FDA is soliciting feedback from the public on the GFI 187 draft until April 19th, 2017, in part to determine whether certain types of genetic alteration in animals might represent no risk to humans or animals, and thus merit reduced federal regulation.

Following federal clearance, the decision on whether to release GM vectors rests with local government. Currently, lack of agreement among Florida voters has delayed the release of OX315A mosquitos. Similar to when GM mosquito release was first proposed in Florida following a 2009-2010 Dengue outbreak, voter concern today hinges on the perception that GM technology is “unproven and unnatural.” This illustrates both a healthy sense of skepticism in our voters, and the critical need to improve scientific education and outreach in stride with biotechnology and policy. Until we achieve better public understanding of GM organisms, including how they are created, controlled, and vetted, we may miss out on real opportunities to safely and rapidly advance public health.

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

February 16, 2017 at 9:46 am

Science Policy Around the Web – August 5, 2016

leave a comment »

By: Fabrício Kury, MD

Genetic engineering

‘Gene drive’ organisms should be tested in field trials, not widely released, experts say

While the Zika virus shows spread into the US, with mosquito-borne transmission having been reported in Miami, the scientific community is eager to kick-start the use of the new biotechnology called Gene Drive. This technique allows for the creation of genes that cheat the trial of chance and get passed on to nearly 100% of the offspring. This way, it is possible to alter the genome of entire populations of species, for example, by making populations of Aedes mosquitoes unable to transmit the Zika or Malaria viruses — if not plainly kill all the Aedes.

The danger of Gene Drive is our lack of knowledge about the impact of drastic alterations in the behavior or biology of one species, and also the consequences from the quick removal of a pervasive species from an ecosystem. The slow progress of Zika into the U.S. through warmer and wetter edges such as Florida and Puerto Rico seems like a window of opportunity for attacking the spread of the disease while it is still relatively isolated. However, the National Academies of Sciences, Engineering and Medicine call for tightly controlled experiments before wide use of the gene drive. As MIT Media Lab professor Kevin Esvelt put it, “there is a nontrivial chance that [the genes] will spread from a single organism released into a wild population into most or all members of the local population — and very possibly into every population of the target species around the globe.” (Ike Swetlitz, STAT news)

Technology and Healthcare

Why lawmakers are trying to make ransomware a crime in California

Ransomware is a type of malware (a “virus”) that can make money for a hacker very quickly. The ransomware program encrypts files in the target computer, then demands a ransom, usually to be paid in cryptocurrency (the most popular is Bitcoin) which can be hard to track, to release the key that decrypts the files. Hospitals are perfect targets for ransomware attacks because they are often big institutions, are mostly unprepared to defend themselves against cybercrime, and hold precious data in its computers. Most often, ransomware makes the system of computers functionally “locked inside a black box” or completely unable to be used, creating mounting losses and outright risks that outweigh the price of the ransom.

This includes the medical data that is kept private inside those computers and becomes locked behind the ransomware’s military-grade encryption. Other times, the cyberattack consists of “kidnapping the privacy” of the patients. Here the hacker makes a copy of the data and requests a ransom not to release it to the public. In 2015 alone, 113 million patients had some or all of their health records stolen, and the hospital hacks showed increase of 600%. It has been called “The Year of the Hospital Hack.” Moreover, according to the FBI, ransomware as a broader industry is on the rise. In the first three months of 2016, victims of ransomware lost more than $209 million, compared to $25 million in the entire 2015. (Jazmine Ulloa, Los Angeles Times)

Affordable Care Act Effects

How I Was Wrong About ObamaCare

The strategy implemented by the Patient Protection and Affordable Care Act (PPACA, “ObamaCare”) for the purpose of controlling health care costs is one that strives for paying for healthcare by value provided instead of service provided. The promoted understanding, as summarized by former health policy advisor to the Obama administration Dr. Ezekiel Emanuel, 2011, is that such force will pressure the health care industry to undergo vertical consolidation into Integrated Delivery Systems. These systems, whose likes could be named as Kaiser Permanente, Geisinger Health Care System, and Intermountain Healthcare, are consolidations of all types of providers (physician, imaging, therapy, nursing, surgery, home care, specialty care etc.) and strives to be at least internally coordinated to provide the best value per cost, since its payment is not completely tied to the number of procedures or services performed.

Two PPACA-derived value-based reimbursed programs were launched in 2012 — the smaller and more cautious Pioneer Accountable Care Organizations, reserved for groups of providers with more experience in integrated health care delivery, and the larger and more ambitious Shared Savings Program Accountable Care Organizations. Their data has been released along the past year. The data shows that, along the first performance year of the Medicare Shared Savings Program, 58 ACOs generated $705 million in savings, feat which earned them $315 in bonuses as per the program’s workings, leaving net $260 million in savings to CMS. In April this year, the first study of the official CMS claims data indicated that the better savings were among the ACOs classified as small groups of providers. This is understood as evidence against the “Kaiserification” of healthcare as envisioned by Dr. Emmanuel, since the savings come not from having all providers as employees of a big conglomerate, but instead in giving more autonomy and power to the health care provider at the forefront of the contact with the patient. (Bob Kocher, Wall Street Journal)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

August 5, 2016 at 11:00 am

Science Policy Around the Web – April 15, 2016

leave a comment »

By: Daniël P. Melters, Ph.D

Photo credit: Holly Pavlika at Shot@Life.org

Social health policy

Paid maternity leave reduces infant death

In developing nations, more generous maternity leave can save the lives of babies, according to a recent study in PLoS Medicine. The paper estimates that each extra month of maternity leave is linked to about eight fewer infant deaths for each 1,000 live births, or a reduction of 13% in infant mortality. The advantages of paid maternity leave are that mothers-to-be will be able to make use of health services before and after childbirth as their income and jobs are protected. It will also reduce anxiety in mother, improving her health besides that of her baby, the study says. Maternity leave also increase the likelihood that mothers will breastfeed their child and stick to vaccination schedules, potentially increasing the power of paid maternity leave.

Based on our analysis, I’m fairly convinced that increasing the duration of paid leave is an effective way to reducing infant mortality”, the lead author Nandi from McGill University says. He adds that his team controlled for other factors that reduce infant death, such as gross domestic product and national health spending. The researchers compared rates of infant death in two groups of low- and middle-income countries, covering 300,000 life births between 2000 and 2008.

Child health researcher Zulfiqar Bhutta from the University of Toronto is cautious about extrapolating the results from this study over all low- and middle-income countries. “The major limitation here is the assumption that maternity leave policies in a country are universally applied, which they are not.” A cautionary note that Nandi agrees with on the end of implementation, as they did not study this. He also points to research in other areas, which suggest that policies improving the conditions of employees tend to have spillover effects. (PLoS Medicine)

Gene-editing technology

Committee to study oversight of GMOs

The United States is revamping its rules for regulating GMOs, which collectively are known as the Coordinated Framework for Regulation of Biotechnology. To that end, the National Academies of Sciences have convened a committee that is charged with predicted what advances will be made in biotechnology products over the next 5-10 years. It will hold its first meeting on April 18th. To date, GMOs are regulated by three US agencies: US Food and Drug Administration (FDA), US Environmental Protection Agency (EPA), and US Department of Agriculture (USDA). The USDA’s Animal and Plant Health Inspection Service (APHIS) regulates any genetically engineered organisms that may pose a risk to plant health. In addition, GMOs may still undergo a voluntary review at the FDA (as Oxitec did with their GMO mosquito), or face oversight by the EPA.

Recently, the USDA allowed a mushroom that has been genetically modified with the new gene-editing technology CRISPR (removing several base-pairs knocking-out a gene responsible for browning) to allowed on the US market without going through a review process. It is one of about 30 GMOs to sidestep the USDA regulatory system in the past five years. In each case, the USDA deemed that each GMO did not qualify, as something the agency must regulate. In other words, the USDA itself acknowledges that it might be overregulating some crops if they have traits that have already been scrutinized.

This is of course not to say that no oversight is needed. The use of gene editing technology in humans is still controversial, especially in human embryos, as became clear again by a second study published by a Chinese group where they used CRISPR to alter human embryos, or the approval of project in the United Kingdom. New hurdles will be encountered as well. The successful removing of HIV from an HIV infected cell by CRISPR was hailed, but its success was short-lived as HIV found a way to outsmart the power of the current CRISPR technology. The fast moving pace at which gene-editing technology is developing and how its use if being exploited highlights the need for the US regulatory agencies to keep up with these chances both from economical growth as well as a public safety perspective. (Heidi Ledford, Nature)

Precision Medicine Initiative

Dishman to lead PMI Cohort

Dr. Francis Collins, the director of the National Institutes of Health, has announced that the permanent director of the Precision Medicine Initiative (PMI) Cohort Program will be Eric Dishman, taking over the helm from interim director Dr. Josephine Briggs. Dishman, 48, who now heads the Health and Life Sciences Group at Intel Corporation in Santa Clara, California, will start his new job next month. He is not an obvious choice to lead the cohort program as he does not have a background in genomics or large, long-term health studies, nor a PhD or MD degree. He does have a trove of knowledge about health technologies, which will play a key role in the PMI-cohort. At Intel, he oversaw research on devices to help Alzheimer’s patients and elderly living independently. Dishman also battled and overcome a rare type of kidney cancer at the age of 23. Several years ago he has his tumor sequences, which pointed to a treatment that might help save his life. According to Collins, Dishman is the right person to the lead PMI-Cohort program with his “wealth of health innovation experience … as a social scientist and researcher, entrepreneur and business leader, patient and patient advocate, and policy advocate and thought leader.” (Joselyn Kaiser, Science Insider)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

April 15, 2016 at 1:00 pm

Science Policy Around the Web – December 18, 2015

leave a comment »

By: Valerie Miller, Ph.D.

Photo source: pixabay.com

“Farmaceuticals”

US government approves (drug-producing) transgenic chicken

On December 8th, 2015, the US Food and Drug Administration (FDA) approved Kanuma (sebelipase alfa), a recombinant enzyme marketed by Alexion Pharmaceuticals, which is meant to treat patients with a rare inherited enzyme disorder known as lysosomal acid lipase (LAL) deficiency. LAL deficiency prevents the breakdown of fatty molecules in the body, leading to fat accumulation in the liver, spleen and vasculature. Kanuma was given priority review, and the FDA moved quickly for its approval, due to Kanuma’s orphan-drug status and designation as a break-through therapy, as there were no therapies available for LAL prior to Kanuma’s approval. Kanuma is unique because it’s made by genetically engineered chickens, which produce the drug in their eggs. Several other ‘farmaceuticals’ have entered the US market ahead of Kanuma, including genetically modified goats that produce the anticoagulant antithrombin in their milk, as well as a drug produced in the milk of transgenic rabbits that treats hereditary angioedema. The FDA regulates the entire chicken, not just the eggs, because all of the chickens’ cells contain modified DNA. Part of this regulation asserts that the altered DNA is not harmful to the chickens nor will these chickens adversely affect the environment. Additionally, unlike the recently approved, genetically engineered AquAdvantage salmon, Kanuma-producing chickens will not enter the food supply. (Rachel Becker, Nature News)

Climate Policy

Nuclear power must make a comeback for climate’s sake

In wake of the landmark climate agreement reached during the COP21 Paris climate negotiations, four prominent climate scientists are advocating for the use of nuclear energy in order to help reduce carbon emissions. James Hansen, former NASA climate scientist; Tom Wigley, climate scientist at the University of Adelaide; Ken Caldeira, climate scientist at Carnegie Institution for Science; and Kerry Emanuel, professor of atmospheric science at MIT, argue that nuclear energy has great potential to be part of the climate change solution and energy system transformation, especially for large countries like China. As the goal of nations is to stabilize atmospheric carbon dioxide levels at 450 parts per million and limit the global rise in temperature to 2 degrees Celsius, the scientists contend that all carbon-reducing energy options need to be considered, including the use of nuclear energy. However, they note that very few nations have discussed the potential of nuclear in their carbon emission reduction pledges, and given the time needed to build nuclear power plants, nations should look into this option immediately.

Other scientists, such as Mark Jacobson, professor of civil and environmental engineering at Stanford University, are concerned that using nuclear energy would create more pollution, because the mining of uranium for use in nuclear reactors is carbon-emitting, and because of the possibility of taking several decades to get nuclear power plants up and running. Instead, he believes that the world can meet the temperature and atmospheric carbon dioxide parts per mission goal using only renewable energy, because the technology to harness wind, water and solar energy already exists. Jacobson calculates that developing renewable energy would net 22 million jobs while ensuring energy security, and that the current fossil fuel-based energy system could be replaced entirely by 2050 worldwide. (Gayathri Vaidyanathan, Scientific American)

Sustainable Food?

The more humanely a fish is killed, the better it tastes

Many people are concerned about consuming sustainable seafood, but few ask about the way in which the fish they eat are killed. In a new study to appear in the January 1st, 2016 edition of Food Science, a team of researchers showed that meat from rainbow trout stressfully-slaughtered by asphyxiation above water tasted worse and had a shorter shelf-life than rainbow trout slaughtered with a swift strike to the head, which is considered to be a more humane method of slaughter. Researchers detected break-down of fatty acids, such as omega-3s, in the fillets of stressfully-slaughtered fish after 75 days in the freezer. By day 135, twice as many fatty acid break-down products were detected in the asphyxiated fish. To determine differences in taste, the team asked four experts in detecting “marine off-flavors” to judge the samples. By day 105, the judges reported a rancid smell and bitter taste in the fillets from asphyxiated fish, but detected no off-flavors or smells in swiftly-killed fish. The researchers speculated that a higher concentration of hydroperoxides that accumulate during stress may have caused the asphyxiated fish fillets to go bad more quickly. They hope that their study will encourage fishers to employ a swifter method of slaughter. (Brendan Bane, Science Shot)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

December 18, 2015 at 9:00 am

Science Policy Around the Web – November 24, 2015

leave a comment »

By: Julia Shaw, Ph.D.

Photo source: pixabay.com CC0 Public Domain

The Environment

Deforestation May Threaten Majority of Amazon Tree Species, Study Finds

For a recent report in the journal Science Advances, over 15,000 tree species native to the Amazon were assessed for their environmental sustainability. The results of this study found that between 36–57% of Amazonian tree species should be identified as threatened. More than 150 researchers contributed to the report, many of them by directly collecting data from 1,485 approximately 2-acre plots of Amazonian forest. The data was then analyzed using two different computer models. Based on a “business as usual” model, by 2050 an estimated 40% of the forest would disappear. This was contrasted with a model of stronger governmental regulations, where they estimated a 21% destruction. Timothy J. Killeen, botanist with Agteca-Amazonica, an organization devoted to the study and preservation of South American natural resources, noted that deforestation rates in Brazil “decreased by about 75% since 2005.” By ensuring proper protection of conservation areas and parks, Hans ter Steege, lead author of the paper, said it would be possible to “protect a substantial part of the diversity in the Amazon.” Unfortunately, according to Kenneth J. Feeley, tropical ecologist at Florida International University, “It’s very easy for governments to draw a line on the map and declare an area protected. It’s much harder to make that area effectively protected.” (Nicholas St. Fleur, The New York Times)

Climate Change

Green Climate Fund faces slew of criticism

Five years ago, the Green Climate Fund (GCF) was established during United Nations (UN) talks in Mexico in order to help developing nations respond to climate change. The initial funding target was $10 billion, to be divided between mitigation and adaptation projects. However, the small administration team, based in Incheon, South Korea, only has $852 million in hand, after receiving pledges totaling $10.2 billion. The United States is one of those nations who have yet to pay-up, having pledged $3 billion with no signed agreement in place. In the world of climate finance, GCF is a minor player, yet is it the largest international public climate fund. GCF approved its first aid commitments on November 6th, to include a wetlands resilience program in Peru, and climate-resilient infrastructure in Bangladesh. However, Brandon Wu, a policy analyst for the non-governmental organization ActionAID, warns, “We are worried about the fund’s social and environmental safeguards, consultation processes, accountability mechanisms and transparency.” The GCF has no information disclosure policy and no accountability mechanism. Projects are reviewed by the board and by an independent technical advisory panel, but are not publicly released. Another concern surrounds the money flow, which is funneled through international organizations rather than directly to institutions in the applicant countries. Understaffed and underfunded, the GCF will have to prove itself over time if it hopes to attract the loyalty of wealthy contributor countries. (Sanjay Kumar, Nature)

Aquaculture

The FDA just approved the nation’s first genetically engineered animal: A salmon that grows twice as fast

After 20 years, the Food and Drug Administration (FDA) has approved the country’s first genetically altered animal for consumption. Laura Epstein, a senior policy analyst with the FDA’s Center for Veterinary Medicine stated, “As with many products that are the first of their kind, we’re very careful to be sure we’re getting everything right.” Produced by Massachusettess-based AquaBounty, the fish, known as AquAdvantage, was found to be as safe and nutritious as conventional Atlantic salmon. AquAdvantage is an Atlantic salmon that contains a gene for a Chinook salmon growth hormone coupled with a promotor gene from an eel-like fish known as the ocean pout which can grow in near-freezing temeperatures. With these genes, the salmon continues to grow during colder months when it normally would not, ultimately resulting in a fish ready for harvesting at 18 months as opposed to 3 years. Opponents of “Frankenfish” argue that its approval sets a dangerous precedent for other genetically altered animals and suggest that it could out-compete native species, decimating their populations. However, AquAdvantage are all female, all sterile, and they will be raised in tanks in dedicated facilities in Canada and Panama. Ron Stotish, chief executive of AquaBounty, said “we’ve developed a product that mitigates many of the concerns they share and we share. I hope people take the time to consider the fact that we are an environmentally sustainable product, and that this might actually be a better way to grow salmon.” Another point of contention surrounds the labeling of genetically engineered foods. Because the FDA found no “material difference” in AquAdvantage compared to the wildtype salmon, the company is not required to label the fish as genetically modified. (Brady Dennis, The Washington Post and Nick Stockton, Wired )

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

November 24, 2015 at 9:00 am