Science Policy For All

Because science policy affects everyone.

Posts Tagged ‘open science

Science Policy Around the Web – June 06, 2017

leave a comment »

By: Kseniya Golovnina, PhD

Source: Flickr, by USDA, via Creative Commons     (CC BY 2.0)

Food Security

What if Food Crops Failed at the Same Time?

When one group of people is fighting with climate change and another considers it “mythical”, researchers specialized in the study of social-ecological systems are developing food supply risk assessment models. Food crops are one of the most important sources of human being existence, and less than one-fourth of the planet (“breadbaskets”) produces three-fourth of the staple crops that feed the world’s population. In fact, climate change could cause crop losses in most of the breadbaskets.

Two important factors included in the models are shocks to major land crop production and economy. Shocks like droughts and heat waves in Ukraine and Russia in 2007 and 2009 almost wiped out wheat crops, and caused global wheat prices to spike. And demand assessments project that food production may have to double by 2050 to feed a growing population. Together, the potential environmental and economic stresses are making the world food production system less resilient, and will affect both rich and poor nations. To measure the fragility of the system, researchers developed scenarios of small shocks (10 percent crop loss) and large shocks (50 percent crop loss). These were then applied to corn, wheat or rice output using an integrated assessment model, the Global Change Assessment Model, which was developed by the U.S. Department of Energy.

Among the critical findings are that “breadbasket” regions respond to shocks in different ways. For example, South Asia, where most of the arable land is already in use, is quite unresponsive to shocks occurring elsewhere in the world, because the total amount of land in agricultural production cannot be changed significantly. In Brazil the situation is opposite, it has a lot of potential to bring new land into production if large shocks occur. However, cleaning Brazil’s forests requires significant effort and would add significantly to global climate change. Within the research agenda of the Pardee Center, these risks and preventive actions are discussed in more detail. The warning is clear: humankind needs to be aware and prepared for potential multiple “breadbaskets” failure if we want to reduce the potential for catastrophe. (Anthony Janetos, The Conversation)

Reproducibility in Science

Research Transparency: Open Science

Increasing amounts of scientific data, complexity of experiments, and the hidden or proprietary nature of data has given rise to the “reproducibility crisis” in science. Reproducibility studies in cancer biology have revealed that only 40 % or less peer-reviewed analyses are replicable. Another large-scale project attempting to replicate 100 recent psychology studies was successful in replicating less than 50% of the original results.

These findings are driving scientists to look for ways to increase study reliability, and make research practices more efficient and available for evaluation. A philosophy of open science, where scientists share their primary materials and data, makes analytical approaches more transparent and allows common research practices and standards to emerge more quickly. For scientific journals and associations, open science methods enable the creation of different ways to store and utilize data. Some journals are specifically dedicated to publishing data sets for reuse (Scientific DataJournal of Open Psychology Data), others require or reward open science practices like publicly posting materials and data.

The widespread use of online repositories to share study materials and data helps to store large data sets and physical materials to help mitigate the problems of reproducibility. However, open science practice is still very much in development, and faces some significant disincentives. Habits and reward structures are two major forces work against. Researchers are used to being close, and hide their data from being stolen. Journal editors tend to favor publishing papers that tell a tidy story with perfectly clear results. This causes researchers to omit “failed” studies that don’t clearly support their theories.

While efforts to overcome these obstacles are difficult, development of fully transparent science should be encouraged, as openness helps improve understanding, and acknowledges the truth that real data are often messy. (Elizabeth Gilbert and Katie Corker, The Conversation)


Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

June 6, 2017 at 9:00 am