Science Policy For All

Because science policy affects everyone.

Posts Tagged ‘preprint

Scientific Activism: Voting to Speed Up Discovery with Preprint Publishing

leave a comment »

By: Thaddeus Davenport, PhD

Source: Public Library of Science, via Wikimedia

         The election of Donald Trump to the Oval Office and the early actions of his administration have sparked a wave of protests in support of women’s rights and immigration, among other issues. Like other citizens, scientists have some cause to be concerned about the administration’s early actions that reveal a general disregard for facts and scientific evidence. In response, organizers have planned the March for Science for this Saturday, April 22nd, as an opportunity for people to gather in cities around the world to voice their support for factual information and scientific research. And while it is important to denounce the actions of the Trump administration that are harmful to science and health, it may be even more critical to acknowledge the underlying partisan divisions that created a niche for his rhetoric and to begin the difficult work of bridging the divide. For example, a Pew Research Center poll from 2015 indicates that 89% of liberal Democrats believe government investment in basic science pays off in the long-run, while only 61% of conservative Republicans feel the same way. Additionally, American adults with less knowledge of scientific topics are more likely to believe that government funding of basic science does not pay off. This suggests that improved science education and outreach will be important in building public support for scientific research. However, scientists often lead very busy lives and have little time outside of their professional activities to devote to valuable pursuits like science outreach. How, then, might scientists work towards building a better relationship with the public?

The products of science – knowledge, medicines, technology – are the clearest evidence of the value of research, and they are the best arguments for continued research funding. Efficiency in science is good not only for scientists hoping to make a name for themselves, but also for the public, who as the primary benefactors of academic research, must benefit from the products of that research. If taxpayers’ demand for scientific inquiry dissipates because of a perceived poor return on their investment, then the government, which supposedly represents these taxpayers, will limit its investment in science. Therefore, in addition to communicating science more clearly to the public, scientists and funding agencies should ensure that science is working efficiently and working for the public.

Information is the primary output of research, and it is arguably the most essential input for innovation. Not all research will lead to a new product that benefits the public, but most research will yield a publication that may be useful to other scientists. Science journals play a critical role in coordinating peer review and disseminating new research findings, and as the primary gatekeepers to this information, they are in the difficult position of balancing accessibility to the content of their journals with the viability of their business. This position deserves some sympathy in the case of journals published by scientific societies, which are typically non-profit organizations that perform valuable functions including scientific outreach, education and lobbying. However, for-profit journals are less justified in making a significant profit out of restricting access to information that was, in most cases, obtained through publicly-funded research.

Restricting access to information gathered in the course of research risks obscuring the value of research to a public that is already skeptical about investing in basic science, and it slows down and increases the cost of innovation. In light of this, there is growing pressure on publishers to provide options for open-access publishing. In 2008, the National Institutes of Health adopted a public access policy, which requires that “investigators funded by the NIH submit or have submitted for them to the National Library of Medicine’s PubMed Central an electronic version of their final, peer-reviewed manuscripts upon acceptance for publication, to be made publicly available no later than 12 months after the official date of publication: Provided, that the NIH shall implement the public access policy in a manner consistent with copyright law.” This policy was extended through an executive order from the Obama Administration in 2013 to include all federal agencies with research budgets greater than $100 million, with additional requirements to improve accessibility.

These requirements are changing scientific publishing and will improve access to information, but they remain limited relative to the demand for access, as evidenced by the existence of paper pirating websites, and the success of open access journals like PLoS and eLife.  Additionally, other funding agencies like the Bill and Melinda Gates Foundation and the Wellcome Trust have imposed even more stringent requirements for open access. Indeed, researchers will find a spectrum of open-access policies among the available journals, with the most rapid access to information allowed by so-called ‘preprint’ publishers like Given that many research manuscripts require months or years of revision and re-revision during submission to (usually multiple) journals, preprint servers accelerate the dissemination of information that is potentially valuable for innovation, by allowing researchers to post manuscripts prior to acceptance in a peer-reviewed journal. Many journals have now adopted explicit policies for handling manuscripts that have been previously submitted to bioRxiv, with many of them treating these manuscripts favorably.

Given that most journals accept manuscripts that have been previously published on bioRxiv, and some journals even look to bioRxiv for content, there is little incentive to submit to journals without also submitting to bioRxiv. If the goal is, as stated above, to improve the transparency and the efficiency of research in order to make science work for the public, then scientists should take every opportunity to make their data as accessible as possible, and as quickly as possible. Similarly, funding agencies should continue to push for increased access by validating preprint publications as acceptable evidence of productivity in progress reports and grant applications, and incentivizing grant recipients to simultaneously submit manuscripts to preprint servers and peer-reviewed journals. Scientists have many options when they publish, and by voting for good open-access practices with their manuscripts, they have the opportunity to guide the direction of the future of scientific publishing. These small, but important, actions may improve the vitality of research and increase the rate at which discoveries tangibly benefit taxpayers, and, in combination with science outreach and education, may ultimately strengthen the relationship between scientists and the public.

March for Science this Saturday, if it feels like the right thing to do, and then strive to make science work better for everyone by sharing the fruits of research.

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

April 20, 2017 at 11:44 am

Science Policy Around the Web – March 29, 2016

leave a comment »

By: Thaddeus Davenport, Ph.D.

Source: Ashley Fisher / Flickr

Modernizing Scientific Publishing

Handful of Biologists Went Rogue and Published Directly to Internet

Peer-reviewed scientific journals are essential for science. They motivate and reward high-quality experimental design and facilitate the dissemination of knowledge that drives innovation. A recent article in the New York Times nicely captures some of the complexity of modern scientific publishing by examining a recent push by some researchers to publish their findings directly to ‘preprint’ servers – a practice already common in physics and mathematics.

Preprint publishing has the potential to significantly speed up publishing, allowing for faster and wider dissemination of ideas into a free, modern digital forum. Some researchers worry that bypassing the traditional peer-review process might eventually erode the quality of research. Though, it could be argued that so long as articles published to preprint servers are treated as preliminary findings (as, perhaps, we should treat all findings published in even the highest tier journals), the online forum has the potential to be a more transparent, robust peer review process than the current model in which a small number of anonymous reviewers decide the value of research.

The article notes other potential hurdles to the widespread adoption of preprint publishing that are deeply embedded in the culture of research. For example, papers are the currency of science. If authors bypassed this system, they would also bypass the possibility of attaining the classic badges of honor associated with publishing in high tier journals, potentially decreasing their competitiveness when applying for jobs and grants.

A change in publishing practices will also, likely, need to coincide with a change in the culture and value system of scientific research, but it is exciting to watch publishing move into the modern world. Scientific progress thrives on new ideas, and the resources of the digital age have the potential to broaden the reach of ideas and to increase the speed of their communication. (Amy Harmon, New York Times)

Economic Policies

A “Circular Economy” to Reduce Waste and Increase Efficiency

Our current economy can largely be described by a linear flow of material in which natural resources are harvested, combined, refined, and converted into products. These products are purchased, and after some amount of use, ultimately recycled or discarded at the discretion of the owner.  In a Nature special this week, Walter R. Stahel describes the potential economic and environmental benefits of a different sort of economy – a “circular economy” – that “replaces production with sufficiency” by encouraging reuse, repair, and recycling over remanufacturing.

Originally conceived by Stahel and his colleague Geneviève Reday-Mulvey in the 1970s, the concept of a circular economy “grew out of the idea of substituting manpower for energy.” For example, Stahel observed that it requires “more labour and fewer resources to refurbish buildings than to erect new ones.” Applying this model to all products has the potential to reduce greenhouse gas emissions substantially and expand the workforce because “remanufacturing and repair of old goods, buildings and infrastructure creates skilled jobs in local workshops.”

To support a transition to a more circular economy, Stahel recommends – among other things in his article –  a change in the way economic success is measured. Rather than trying to maximize our gross domestic product (GDP), a measure of the flow of resources, perhaps we should attempt to optimize the “value-per-weight” or “labor-input-per-weight” of the manufactured products. Policies and tax structures designed to maximize these economic indicators might be effective in encouraging stewardship of the earth’s limited resources and cultivating job growth. (Walter R. Stahel, Nature News)

A Second Chance for Grants

New funding matchmaker will cater to NIH rejects

The majority of NIH grant applications do not receive funding, not necessarily because the applications are of poor quality, but rather because there are simply more good ideas than the government has the capacity to support. A recent article in Science news by Kelly Servick describes a pilot program started earlier this month by NIH in collaboration with Leidos to address this gap in funding.

The program, known as OnPAR, aims to establish a more open market in which NIH grant applications that score well (within the thirtieth percentile) but do not receive funding would then be made available to private organizations and funding agencies for consideration. It seems that this system would be of substantial benefit to grantwriters – increasing the efficiency of grant-writing and review by allowing “recycling” of grants and their associated peer reviews, which are expensive to produce in terms of time and energy, and thus, money.

Funding agencies may see value in this program through expanded access, possibly finding themselves in the position to fund and motivate inquiry for researchers who may not have applied to their organization directly. However, private funding agencies are often in a position similar to that of the federal government – they receive more good applications than they have resources to support, and Servick notes that “the success of the project will hinge on whether private funders see value in using OnPAR in addition to their existing grant review process.”

If funders do find value in OnPAR, it is conceivable that they might allocate a percentage of their annual budget for OnPAR grants. Time will reveal the ultimate value of OnPAR, but it is a step in the right direction. How else might we increase the efficiency of the scientific production cycle? (Kelly Servick, Science News)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

March 29, 2016 at 10:00 am