Science Policy For All

Because science policy affects everyone.

Posts Tagged ‘science diplomacy

Science Policy Around the Web – October 18, 2016

leave a comment »

By: Agila Somasundaram, PhD

Source: WHO

Global Health

Why is the news about TB so bad?

The Global Tuberculosis Report released recently by the World Health Organization (WHO) reveals that the Tuberculosis (TB) epidemic is larger than previously estimated. TB has generally been considered a disease of the past, but the new report estimates that around 10.4 million people were infected in 2015, 480,000 of the new cases being multidrug-resistant TB (MDR-TB). TB claimed on average more than 34,000 lives a week, exceeding the death toll by Ebola. 60 % of the new cases were seen in India, Indonesia, China, Nigeria, Pakistan and South Africa.

TB is especially difficult to combat in the developing world, for many reasons. Firstly, it is difficult to accurately estimate the number of TB cases. For example, WHO estimates that about half of the TB cases in India are not reported to health authorities. In parts of Central Africa, the lack of resources to carry out large-scale surveys results in insufficient data on the epidemic. Secondly, crowded living conditions and poor nutrition make people more susceptible to the disease. TB is also financially draining on the families of those infected, resulting in poor treatment. Thirdly, new drugs (Bedaquiline, Delamanid) that have been developed to treat MDR-TB are being used very cautiously to avoid the development of drug-resistance and side effects. And last, current efforts to cure TB are focused on symptomatic cases, and not pre-symptomatic or early stage cases.

The WHO report states, “Global actions and investments fall far short of those needed to end the global TB epidemic.” Dr. Margaret Chan, Director General of WHO said, “We face an uphill battle to reach the global targets for tuberculosis. There must be a massive scale-up of efforts, or countries will continue to run behind this deadly epidemic…” (Rina Shaikh-Lesko, NPR)

Science Diplomacy

U.S. and Cuban biomedical researchers are free to collaborate

The United States reconciled with Cuba in 2014, and has been removing several sanctions since then. Along with ease of trade and travel between the two countries, scientists from the two nations can now collaborate more easily with each other. Earlier, scientists in the US had to go through a “a very involved and detailed process” with the Office of Foreign Assets Control (OFAC) to get a license to conduct research with Cuban scientists, and these licenses typically lasted only a year or two. Also, what kinds of collaborations were permissible was unclear under the old rules.

Both the US and Cuban scientists welcome the new move. Dr. Pedro Valdés-Sosa, research director at the Cuban Neuroscience Center in Havana said on his visit to the US, “…Everywhere I went there were concrete ideas for collaborations that would benefit the people of both countries. These new measures pave the way for cooperation.” Also, Cuban scientists can now receive research funding from the US government, the Food and Drug Administration (FDA) can review drugs developed in Cuba, and FDA-approved drugs can be imported from Cuba and sold in the US. Dr. Thomas Schwaab of Roswell Park Cancer Institute in Buffalo, New York wonders whether Cuban scientists who have ongoing collaborations with scientists in other parts of the world would welcome working with the US, given that they were shunned for so long. But the Cuban scientists “are very proud of what they’ve achieved,” says Dr. Schwaab. (Richard Stone, Science)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

October 18, 2016 at 9:00 am

Science Diplomacy Between the US and Cuba

with one comment

By: Steven Witte, B.Sc.

Photo source: pixabay.com

Located less than 90 miles apart, Cuba and the United States share many of the same environmental and public health challenges. Invasive species such as lionfish, African catfish, and marabou are threatening native species. Oil drilling in the Gulf of Mexico poses a potential risk for an environmental disaster, and tourism is threatening coral reefs and other important ecosystems. And recently, the Zika virus and chikungunya have been spreading throughout the Caribbean. It is predicted the viruses may make their way to Cuba and eventually even parts of the United States. By working together, these two countries could develop better strategies to solve these problems. But cooperation between the US and Cuba has been extremely difficult for several decades because of strained relations between the two nations.

In the past, American and Cuban scientists have successfully collaborated together. In the mid-nineteenth century, the Smithsonian Institution in Washington, DC, established ties with two Cuban institutions in Havana: the Economic Society of Friends of the Country, and the Royal Academy of Medical, Physical, and Natural Sciences. Soon after, Jesse Lazear and Carlos Finlay, scientists from the USA and Cuba, respectively, collaboratively made crucial discoveries concerning the transmission of yellow fever, leading to effective preventive measures. During the Cold War, however, diplomatic relations between the United States and Cuba were severed. Further, embargoes were put in place preventing trade between the countries. As a result, Cuba could no longer receive funding or equipment from the United States, except in very specific circumstances. It also became difficult for American scientists to travel to Cuba for meetings, thus affecting scientific relationships.

Re-establishing scientific collaborations with Cuba would benefit both the US and Cuba in a number of ways. Vaccines or drugs are currently unavailable for Zika and Chikungunya viruses, and the best option is to closely monitor the spread of these diseases. Sharing data with Cuba, which already has observation programs in place, would help identify outbreaks and develop responses. The Cuban biotechnology industry has many products that could be used by Americans – for example, Cuba is an important producer of vaccines, exporting them to many other countries. More recently, a company in Cuba has developed a drug for treating severe diabetic foot ulcers, which can prevent the need for amputations. Other companies have products to prevent or treat many diseases that impact U.S agriculture and cattle, such as a vaccine for serious tick infestations. Cuba would benefit from scientific expertise in America, as well as funding and equipment that could be provided, as many of the research institutions in Cuba currently operate on small budgets. Allowing Cuban scientists to attend conferences in America would provide a healthy exchange of knowledge and expertise.

Over the past several decades, many attempts have been made to re-establish scientific relationships with Cuba. During President Jimmy Carter’s administration, the National Science Foundation (NSF) considered establishing links with Cuban research institutions and tried to finance joint research projects, but these goals were never realized. More recently, the Center for Science Diplomacy of the American Association for the Advancement of Science (AAAS) has made several visits to Cuba to promote scientific cooperation. In 2014, the AAAS and the Cuban Academy of Sciences signed a historic agreement in which both organizations agreed to work together on four scientific areas: infectious diseases, cancer, antimicrobial resistance, and neuroscience. Following this agreement, Cuban and American scientists met in Washington, DC, and discussed plans to create further agreements on collaborations for ocean science research and conservation. In 2015, President Barack Obama’s administration re-established diplomatic ties with Cuba. Although this is beneficial for fostering scientific relationships, many barriers still remain. The trade embargo is still in effect, for example, and it is still difficult for scientists to travel to Cuba. However, progress has been made. The United States has enacted policy to allow Cubans to get educational grants and scholarships. And scientific equipment can now be donated to Cuba, unless it has potential military applications.

Going forward, several ideas have been proposed to foster scientific relationships between Cuba and the United States. High-level governmental agreements could go a long way in enabling scientific collaboration. Non-governmental organizations (NGOs) that work internationally in partnership with governments to try and solve global problems could also catalyze shared scientific programs. For example, the Clinton Climate Initiative has partnered with the governments of several island nations and helped them reduce their dependence on fossil fuels by using renewable energy. Others have suggested that the United States shut down its Naval base in Guantánamo Bay, and re-purpose the facilities as a marine research institution and peace park.

Regardless of the form it takes, cooperation between scientists in Cuba and the United States could benefit both countries as they address emerging environmental, public health, and biomedical problems. In addition, cooperation through science could pave the way to peaceful cooperation in other arenas between both countries, as they re-establish connections following several decades of unfavorable relations.

Written by sciencepolicyforall

May 18, 2016 at 9:00 am

Posted in Essays

Tagged with ,

Broadening the Debate: Societal Discussions on Human Genetic Editing

leave a comment »

By: Courtney Pinard, Ph.D.

Licensed via Creative Commons

In one of the most impressive feats of synthetic biology so far, researchers have harnessed the ability of bacteria to fight and destroy viruses, and have been able to precisely and cheaply edit genetic code using a genetic technology called clustered, regularly-interspaced short palindromic repeats (CRISPR) and CRISPR-associated endonuclease protein 9 (Cas9). CRISPR has been used to find and detect mutations related to some of the world’s most deadly diseases, such as HIV and malaria. Although CRISPR holds great promise for treating disease, it raises numerous bioethical concerns, which were sparked by the first report of deliberate editing of the DNA of human embryos by Chinese researchers. Previous blog posts have described scientific discussion surrounding the promise of CRISPR. At least three scientific research papers per day are published using this technique, and biotech companies have already begun to invest in CRISPR to modify disease-related genes. However, the use of CRISPR, or any genetic editing technology, to permanently alter the genome of human embryos is an issue of concern to a much broader range of stakeholders, including clinicians, policymakers, international governments, advocacy groups, and the public at large. As CRISPR moves us forward into the realm of the newly possible, the larger global, social and policy implications deserve thorough consideration and discussion. Policies on human genetic editing should encourage extensive international cooperation, and require clear communication between scientists and the rest of society.

There is no question that CRISPR has the potential to help cure disease, both indirectly and directly. CRISPR won the Science Breakthrough of the Year for 2015, in part, for the creation of a “gene drive” designed to reprogram mosquito genomes to eliminate malaria. Using CRISPR-Cas9 technology, investigators at the Universities of California (UC) have engineered transgenic Anopheles stephensi mosquitoes to carry an anti-malaria parasite effector gene. This genetic tool could help wipe out the malaria pathogen within a targeted mosquito population, by spreading the dominant malaria-resistant gene in 99.5% of progeny. The gene snipping precision of CRISPR can also treat certain genetic diseases directly, such as certain cancers, and sickle cell disease. CRISPR can even be used to cut HIV out of the human genome, and prevent subsequent HIV infection.

There are limitations of CRISPR, which include the possibility of off-target genetic alterations, and unintended consequences of on-target alterations. For example, the embryos used in the Chinese study described above, were non-viable, less than 50% were edited, and some embryos started to divide before the edits were complete. Within a single embryo, some cells were edited, while other cells were not. In addition, researchers found lack of specificity; the target gene was inserted into DNA at the wrong locus. Little is known about the physiology of cells and tissues that have undergone genome editing, and there is evidence that complete loss of a gene could lead to compensatory adaptation in cells over time.

Another issue of concern is that CRISPR could lead scientists down the road to eugenics. On May 14th 2015, Stanford’s Center for Law and the Biosciences and Stanford’s Phi Beta Kappa Chapter co-hosted a panel discussion on editing the human germline genome, entitled Human Germline Modification: Medicine, Science, Ethics, and Law. Panelist Marcy Darnovsky, from the Center for Genetics and Society, called human germline modification a society-altering technology because of “the potential for a genetics arms race within and between countries, and a future world in which affluent parents purchase the latest upgrades for their offspring.” Because of its potential for dual use, genetic editing was recently declared a weapon of mass destruction.

In response to ethical concerns, the co-inventor of CRISPR, Dr. Jennifer Doudna, called for a self-imposed temporary moratorium on the use of CRISPR on germline cells. Eighteen scientists, including two Nobel Prize winners, agreed on the moratorium. Policy recommendations were published in the journal Science. In addition to a moratorium, recommendations include continuing research on the strengths and weaknesses of CRISPR, educating young researchers about these, and holding international meetings with all interested stakeholders to discuss progress and reach agreements on dual use. Not all scientists support such recommendations. Physician and science policy expert Henry Miller disagrees on a moratorium, and argues that it is unfair to restrict the development of CRISPR in germline gene therapy because we would be denying families cures to monstrous genetic diseases.

So far, the ethical debate has been mostly among scientists and academics. In her article published last December in The Hill Congress Blog, Darnovsky asks: “Where are the thought leaders who focus, for example, on environmental protection, disability rights, reproductive rights and justice, racial justice, labor, or children’s welfare?” More of these voices will be heard as social and policy implications catch up with the science.

In early February, the National Academy of Sciences and National Academy of Medicine held an information-gathering meeting to determine how American public attitudes and decision making intersect with the potential for developing therapeutics using human genetic editing technologies. The Committee’s report on recommendations and public opinion is expected later this year. One future recommendation may be to require Food and Drug Administration (FDA) regulation of genetic editing technology as a part of medical device regulation. Up until recently, the FDA has been slow to approve gene therapy products. Given the fast pace of CRISPR technology development, guidelines on dual use, as determined by recommendations from the National Academies, should be published before the end of the year. So far, U.S. guidelines call for strong discouragement of any attempts at genome modification of reproductive cells for clinical application in humans, until the social, environmental, and ethical implications are broadly discussed among scientific and governmental organizations.

International guidelines on the alteration of human embryos are absolutely necessary to help regulate genetic editing worldwide. According to a News Feature in Nature, many countries, including Japan, India, and China, have no enforceable rules on germline modification. Four laboratories in China, for example, continue to use CRISPR in non-viable human embryonic modification. Societal concerns about designer babies are not new. In the early 2000s, a Council of Europe Treaty on Human Rights and Biomedicine declared human genetic modification off-limits. However, the U.K. now allows the testing of CRISPR on human embryos.

In a global sense, employing tacit science diplomacy to developments in synthetic biology may mitigate unethical use of CRISPR. Tacit science diplomacy is diplomacy that uses honesty, fairness, objectivity, reliability, skepticism, accountability, and openness as common norms of behavior to accomplish scientific goals that benefit all of humanity. The National Science Advisory Board for Biosecurity (NSABB) is a federal advisory committee that addresses issues related to biosecurity and dual use research at the request of the United States Government. Although NSABB only acts in the U.S., the committee has the capacity to use tacit science diplomacy by providing guidance on CRISPR dual use concerns to both American citizen and foreign national scientists working in the U.S.

Under tacit science diplomacy, scientific studies misusing CRISPR would be condemned in the literature, in government agencies, and in diplomatic venues. Tacit science diplomacy was used when the Indonesian government refused to give the World Health Organization (WHO) samples of the bird flu virus, which temporarily prevented vaccine development. After five years of international negotiations on this issue, a preparedness framework was established that encouraged member states to share vaccines and technologies. A similar preparedness framework could be developed for genetic editing technology.

Institutional oversight and bioethical training for the responsible use of genetic editing technology are necessary, but not sufficient on their own. Tacit science diplomacy can help scientists working in the U.S. and abroad develop shared norms. Promoting international health advocacy and science policy discussions on this topic among scientists, government agencies, industry, advocacy groups, and the public will be instrumental in preventing unintended consequences and dual use of genetic editing technology. 

Written by sciencepolicyforall

March 9, 2016 at 9:01 am

Science Policy Around the Web – August 4, 2015

leave a comment »

By: Elisavet Serti, Ph.D.

“photo credit:CDC Global Health via photopin cc

Global health

Ebola vaccine is ‘potential game-changer’

The World Health Organization (WHO) recently published vaccine trial results in the Lancet and characterized the VSV-EBOV vaccine as a potential “game-changer” in the fight against the Ebola disease. The “remarkable” results that show that the vaccinated participants of the study were subsequently 100% protected against the virus. The vaccine contains a fragment of the Ebola virus on a VSV viral vector in order to train the immune system to recognize Ebola and build “immune memory” against the deadly virus. The trial was based on “ring” strategy, based on that used in smallpox eradication in the 1970s, to test the vaccine’s effectiveness. “The premise is that by vaccinating all people who have come into contact with an infected person you create a protective ‘ring’ and stop the virus from spreading further,” said John-Arne Rottingen of the Norwegian Institute of Public Health, which had been involved in implementing the trial. This means that when a patient was identified as Ebola-positive, his friends, neighbors and family were vaccinated to create a “protective ring” of immunization. One hundred patients were identified in the trial between April and July and then close contacts were either vaccinated immediately, or three weeks later. In the 2,014 close contacts who were vaccinated immediately there were no subsequent cases of Ebola. In those vaccinated later there were 16 cases, according to the results published in the Lancet medical journal. As a result of these observations, the researchers decided to immediately vaccinate the close contacts of Ebola patients in Guinea, including children based on the safety assessments for this vaccine. Marie-Paule Kieny, an assistant director general at the WHO told BBC News: “It is certainly promising. We have seen that where rings have been vaccinated, the transmission has stopped. (…) When there is a new outbreak this vaccine will be put to use to stop the outbreak as soon as possible to not have the terrible disaster we have now.” (James Gallagher, BBC News)

Science in International Policy

Bridging the Chasm: Why Science and Technology Must Become Priorities for Diplomacy and International Policy

An interesting perspective was recently published by Daryl Copeland in the “Science and Diplomacy”, a quarterly publication from the American Association for the Advancement of Science (AAAS) Center for Science and Diplomacy. Mankind is currently faced with several profound global challenges, such as widespread epidemics and climate change, that require expertise and cooperation on a global scale. The main message of this article was that it is necessary for diplomacy and international policy to incorporate science and technology in order to address the world’s most important problems, such as those affecting the future of our planet. According to Copeland, “science diplomacy is relevant, effective, and potentially transformative. It can play a key role in responding to some of the most elemental challenges facing the international community.” He urged for increased resources, training and prioritization of science diplomacy by governments and international policy organizations. Scientists should be trained properly by policy institutions in order to be understood by the public and the borders of science should broaden in the consulting sector. The scientific culture of evidence-based decision making should be implemented in public administration as it encourages “openness and transparency (through the publication of research findings), merit (through peer review), and civic values and citizen empowerment (…) Science offers a methodology and approach that produces the closest thing we have to proof and truth.” (Daryl Copeland, Science and Diplomacy, AAAS)

Childhood screening

Although the American Academy of Pediatrics has issued guidelines that recommend ongoing surveillance and screening for autism at 18 and 24 months regardless of whether a child show signs of the disorder, the U.S. Preventive Services Task Force needs more evidence to support it. The independent scientific panel recommends testing only if a young child shows signs of an autism spectrum disorder (ASD). ASD is a group of developmental disabilities that can cause significant social, communication and behavioral challenges. About one in 68 U.S. children have an autism spectrum disorder, according to estimates from CDC’s Autism and Developmental Disabilities Monitoring (ADDM) Network. It occurs in all racial, ethnic, and socioeconomic groups and it is almost 5 times more common among boys (1 in 42) than among girls (1 in 189). According to “Autism Speaks”, an organization that stresses the importance of ASD early diagnosis and intervention, the “red flags” that a parent should look for include no big smiles or other joyful expression by 6 months, no sharing of smiles or sounds by nine months, no babbling by 12 months, no words by 16 months, no meaningful, two word phrases by 24 months, or any loss of speech, babbling or social skills at any age of a toddler’s life. The task force review, which began in 2013, found significant research gaps regarding the benefits and harms of screening all children for ASD, said Grossman, who is also a pediatrician in Seattle. “We need more evidence and we think that evidence is achievable,” Grossman said. On the other hand, Dr. Susan Levy, chair of the AAP’s autism subcommittee and a developmental and behavioral pediatrician at the Children’s Hospitals of Philadelphia, said her concern is that the task force’s statement will lead people to question the benefit of screening. Early identification allows for early intervention, which is known to result in better outcomes for children, she said. (Andrew M. Seaman, Reuters)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

August 4, 2015 at 10:00 am

Science Policy Around the Web – May 8, 2014

leave a comment »

By: Kaitlyn Morabito

By pakorn, published on 27 March 2014 Stock Photo - image ID: 100251584  Via www.freedigitalphotos.net

By pakorn, published on 27 March 2014
Stock Photo – image ID: 100251584
Via http://www.freedigitalphotos.net

Our weekly linkpost, bringing you interesting and informative links on science policy issues buzzing about the internet.

Soaring MERS cases in Saudi Arabia Raise Alarms – A spike in the number of new MERS virus cases, over 200 in April alone, in Saudi Arabia and United Arab Emirates has raised concerns amid scientists, the ECDC, and the WHO.   Among the fears is that the virus has mutated to enhance human-to-human transmission potentially leading to a pandemic, although there is no evidence to support this supposition. Other reasons for the surge may be increased testing, increased birth rate of camels, poor hospital hygiene or a combination of these possibilities. Scientists, including Christian Drosten of University of Bonn in Germany, are sequencing viral genomes from outbreaks, and the data seems to support recurrent camel-to-human transmission. Further understanding of the route of transmission is needed to control circulation between camels and humans. (Kai Kupferschmidt)

Science Diplomacy Visit to Cuba Produces Historic Agreement – Despite a frosty relationship between their governments, US and Cuban scientists and policy makers recently met at the Cuban Academy of Sciences in Havana, Cuba to strengthen scientific collaboration between the countries. Undeterred by periods of economic hardship, Cuba currently has a strong biotechnology industry especially in regards to infectious disease. The American group, lead by AAAS, along with Cuban scientists penned an agreement focused on cancer, antibiotic resistance, emerging infectious disease, and brain disorders as areas in which collaborations could flourish. This memorandum is just one step in continuing to grow the partnership between the US and Cuba in science and there remains significant obstacles to success. (Kathy Wren)

Climate Change Assessment Paints Stark Picture of Potential Damage – The Obama administration released the Third National Climate Assessment on Tuesday, which evaluates the local impact of and the influence of humans on climate change. The congress-mandated quadrennial report concludes that there has been an uptick in the number of extreme weather events as well as the severity of these events. The report uses scientific data to refute many aspects of climate change deniers’ arguments regarding the role of man in causing climate change.   The impact on specific US regions are outlined including increased heavy precipitation in the Northeast and Midwest leading to flooding. The Southwest, on the other hand, will likely see more heat leading to drought and wild fires. This report bolsters efforts by the Obama administration to actively focus on mitigating climate change. (Neela Banerjee & Kathleen Hennessey)

 

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

May 8, 2014 at 9:10 pm

Science Diplomacy: How Can We Make It Work?

leave a comment »

By K. Shmueli

 Despite some of the scientists I know behaving far from diplomatically, science diplomacy is an increasingly important endeavor which aims to improve international relations and solve pressing global problems encompassing health, security and the environment. A recent meeting exploring New Frontiers in Science Diplomacy introduced a useful conceptual framework highlighting the multiple dimensions of science diplomacy: Science in diplomacyinvolves informing foreign policy objectives with scientific advice. Diplomacy for science is the facilitation of international science, engineering and technology cooperation. Science fordiplomacy is the utilization of science collaboration to improve relations between countries.

A classic example of science for diplomacy is the maintentance of ties between US and Soviet scientists throughout the cold war, both through the Pugwash movement and, more spectacularly, through the Apollo-Soyuz test project culminating in a joint space flight in 1975. More recently, the potentially life-saving power of science diplomacy has been demonstrated by at least seven cease-fires during civil conflicts since 1994 negotiated by UNICEF and other non-governmental organizations through vaccination campaigns.

Looking forward, science diplomacy may be most needed to tackle the challenges of global sustainability. Mechanisms such as the Intergovernmental Panel on Climate Change can help to inform global policymaking with scientific advice. It is not straightforward to measure the impact of such efforts in science diplomacy. One measure of success is the continuation of scientific relationships beyond the life of grant funding. Results in science and science diplomacy often take years to appear thus science and technology have become pillars of long-term strategic planning in the foreign policy arena.

Why is science diplomacy effective? Because scientists share a common language and values such as rationality and transparency, science can provide a non-ideological environment that helps to engage people across different cultures and build trust between nations even amidst political tensions. Using science and technology to address shared challenges can lead to mutual benefits. Scientific collaboration may also give access to influential and politically connected people in contexts where few channels for dialogue exist.

When does science diplomacy fail? Technology and knowledge transfer can be difficult between competitors, particularly where there are security concerns or with dual-use technologies. Asymmetries in scientific capabilities (e.g., between the USA and African nations) and lack of funding for international collaborative activities can also hinder diplomatically productive scientific partnerships.

For science diplomacy to work, scientific goals must be at the forefront and diplomatic goals should be clearly defined to avoid science being used for purely political ends. Some argue that, ironically, science diplomacy works best on an individual level when scientists focus on doing good science without an overt science diplomacy agenda.

Written by sciencepolicyforall

December 29, 2010 at 12:35 pm

Posted in Essays

Tagged with ,