Science Policy For All

Because science policy affects everyone.

Posts Tagged ‘space

Science Policy Around the Web – April 16, 2019

leave a comment »

By: Mary Weston, PhD

Source: Wikimedia

Astronaut twins study spots subtle genetic changes caused by space travel

In 2015, NASA began their Twins Study, where they evaluated the biological effects of one year of spaceflight on an astronaut by comparing him to his earthbound identical twin. One year after returning to earth, the majority of observed physiological changes from space reverted back to the astronaut’s original state, with only subtle genetic changes remaining. 

Spaceflight exposes the body to ionizing radiation and near-zero gravity, and the consequences of long-term exposure to these conditions are not known. On this mission, Scott Kelly spent 340 days in space from 2015-2016 (he has a lifetime total of 520 space days). His brother Mark, a retired astronaut who had previously spent 54 days in space over four space-shuttle missions, remained on earth and acted as a near identical biological control. The study involved only two people, so not all findings may be applicable to other astronauts, but NASA hopes to use the information to direct future astronaut health studies.

Teams of researchers gathered a wide array of genomic, molecular, physiological, and other data on the men before, during, and after the mission. They reported that Scott Kelly did display signs of stress from space travel, with changes seen in most areas measured. 

However, now researchers are finding that most of the changes Scott Kelly experienced from spaceflight have reverted back to their original state after 6 months of being back on earth. NASA argues that “the Twins Study demonstrated the resilience and robustness of how a human body can adapt to a multitude of changes induced by the spaceflight environment”.

One genetic change that did persist six months after Scott’s return was to his chromosomes. Parts of them inverted (flipped), which could lead to DNA damage, and is possibly due to the large amounts of space radiation. Further, researchers hypothesized that space flight would shorten telomers, important caps at the end of chromosomes, since they decrease with age and spaceflight is expected to stress the body similar to aging. However, a majority of his telomers lengthened while Scott Kelly was in space, while only few shortened. Those that lengthened returned to their normal state after about 48hrs on earth, but the shortened ones remained. 

Given the space community’s interest in increasingly ambitious space missions and plans to explore Mars, studies exploring the long-term health impacts of spaceflight will be extremely important for the future.

(Alexandra Witze, Nature


Abnormal Levels of a Protein Linked to C.T.E. Found in N.F.L. Players’ Brains, Study Shows

Last week, the New England Journal of Medicine published a study that used experimental brain scans to compare the levels and distribution of tau, a protein linked to chronic traumatic encephalopathy (CTE), in retired NFL players and male controls who had never played football. They found that the NFL players had elevated levels of tau in areas where the protein had previously been detected postmortem. 

CTE is associated with repetitive hits to the head, like those encountered during contact/collision sports. Currently, pathologists can only posthumously diagnose CTE. This new study is the first to evaluate tau averages and overall patterns from a group of living former football players (26 men) with a control group (31 men). The project, led by Dr. Robert Stern of Boston University, used Positron Emission Tomography (PET) scans to image the brain after exposure to a radiolabeled substrate that specifically binds tau. 

Both the study’s authors and outside experts emphasize that a CTE diagnostic test is still far from ready and would likely include other markers from blood and spinal fluid as well.  However, this study represents a preliminary, first step towards developing a clinical test to detect CTE in living players, which may also ultimately assist in identifying early disease signs and those with potential risk of developing CTE. 

The relationship between CTE symptoms and the role of tau, which occurs naturally in the brain, is not clear. The study found no correlation between the amount of abnormal tau and the severity of cognitive and mood problems in the players. However, these results are preliminary and the player sample size was small. Evaluation of larger sample size of football players is needed to continue to explore the role of tau and replicate the observed elevated levels found in this paper. 

(Ken Belson and Benedict Carey, New York Times


Have an interesting science policy link? Share it in the comments!

Advertisements

Written by sciencepolicyforall

April 17, 2019 at 9:34 am

Science Policy Around the Web – February 26, 2019

leave a comment »

By: Mary Weston, Ph.D.

Source: Wikimedia

A Century-Old Debate Over Science Patents Is Repeating Itself Today

In 1923, after the economic devastation of World War I, the Italian senator Francesco Ruffini wanted to bolster scientific research by giving scientists ownership of their discoveries. His scheme would have awarded scientists a patent of sorts on the laws of nature they found. Although he had reasonable scientific support and the backing of the newly formed League of Nations, ultimately scientists around the world strongly rejected the plan for various reasons. Recent proposed changes to scientific discovery patent law possess a striking similarity to these events and proposals nearly 100 years ago.

Ruffini, desiring to increase scientific research, argued that scientists should be able to receive “scientific property” for a discovery, similar to patents awarded for inventions. He cited the example of “Hertzian waves” (i.e. radio waves) as something that resulted in many valuable products. The proposal was a large deviation from the existing law, where patents could only be assigned for inventions – artificial things made by humans, like machines – but not for discoveries of the natural world. Ruffini “was clear that scientific property would not prevent all uses of a natural law. But only practical commercial applications”.

In 2017, the American Intellectual Property Law Association (AIPLA) and the American Bar Association’s Intellectual Property Section (ABA’s IP) both submitted proposals to change current laws (Amendment 35, Section 101) and allow for patents on scientific discoveries. Motivation for change stems from recent Supreme Court decisions regarding patents for medical techniques (use of the BRCA1/2 gene for detecting breast cancer and a blood diagnostic test to fine-tune autoimmune disease treatments). Currently legislators, specifically Senators Thom Tillis and Chris Coons, are revisiting these guidelines and roundtables were held in both January and February of this year. 

The demise of the previous 1920s proposal was due to details in implementation, very similar to the problems current proposals face today. These include how to:

  • attribute scientific property when there are many contributors to one discovery (i.e. who “discovered” electricity? Benjamin Franklin? George Ohm?). 
  • deal with unexpected liability, potentially requiring some sort of scientific property insurance scheme. 
  • deal with the scope of some scientific discoveries, possibly being so large that it leads to tremendous and costly amounts of ligation. 
  • write the patents with the specificity required without being too vague and/or speculative. 

Edward S. Rogers, a Chicago lawyer who assisted Ruffini with his proposals in the 1920s, ultimately warned against it in 1931, saying that while the plan was appealing, “the whole scheme seems impractical.”

If changes to the patent law are to occur, the same issues that prevented change nearly 100 years ago will need to be solved – a daunting and challenging task.

(Charles DuanSlate

Japanese Spacecraft Successfully Snags Sample of Asteroid Ryugu

The Hayabusa2, a Japanese asteroid-sampling spacecraft, just successfully retrieved surface pieces from Ryugu, a 3000-foot wide asteroid. To obtain the sample, the probe fired a 0.2 ounce tantalum “bullet” into the boulder-covered surface at close range, and then collected disturbed particles using a “sampling horn” located on the underside of the machine. 

The Japanese Space Agency (JAXA) launched the Haybusa2, Japanese for Peregrine Falcon, in December 2014. They told CNN that even reaching the asteroid, 180 million miles from earth, is the “equivalent of hitting a 2.4-inch target from 12,400 miles away”. Upon arrival, the probe circled the small asteroid for 1.5 years collecting data. Then, last September, two probes were successfully released to image and document the asteroid surface. 

The goal of this exploration journey is to better understand the early history and evolution of the solar system. Ryugu is a C-type asteroid, the category that ~75% of known asteroids falls into, and is thought to contain water and other organic materials. One theory suggests that much of earth’s water and organic compounds may have been delivered by asteroids and comets. This will be the first time scientists have visited and collected samples from this type of asteroid and evaluation of its composition may “clarify interactions between the building blocks of Earth and the evolution of its oceans and life,” JAXA described

JAXA is planning two additional sampling expeditions in the next couple of weeks. This second mission will collect additional surface material. The third will use a copper projectile to create a surface crater in order to obtain samples from beneath the asteroid’s surface, which has been weathered by deep-space radiation. The Haybusa2 will depart the asteroid in December 2019 and should arrive back to earth in December 2020.

(Mike WallSpace.com)

Have an interesting science policy link? Share it in the comments!

Written by sciencepolicyforall

March 1, 2019 at 12:58 pm