Science Policy For All

Because science policy affects everyone.

Posts Tagged ‘virus

How Science Policy Affects Pandemic Pathogen Research

leave a comment »

By: Samuel Porter, PhD

         In 2012, a pair of studies were published in Nature and Science weeks apart igniting one the biggest national debates about science in recent memory. These studies demonstrated that a few mutations in the highly pathogenic H5N1 strain of influenza virus (colloquially known as “bird flu”) could enable it to be transmitted through the air to mammals. At the heart of controversy was the question of whether scientists should be creating more virulent and/or pathogenic strains of deadly viruses in the lab. This controversial research is known as “gain of function” studies.

Critics claimed that the research was too dangerous that the risk of an accidental or deliberate release of these lab strains was far greater than the scientific and public health benefits. In an attempt to respond to the growing concern over their work, the community of researchers working with these pathogens voluntarily agreed to suspend this gain of function research for 60 days to discuss new policies on conducting the research safely.

But that was not enough to satisfy critics of the research, who continued to lobby the Obama administration to take official action. On October 17, 2014 the White House Office of Science and Technology Policy (OSTP), abruptly announced a pause on all U.S. Government funding of gain of function research on influenza, Middle East respiratory syndrome (MERS), and severe acute respiratory syndrome (SARS) coronavirus until the National Science Advisory Board for Biosecurity (NSABB) could make recommendations for policy regulating the research going forward. The NSABB was formed in 2005 (in the wake of the anthrax attacks in 2001), and is composed of scientists from universities around the nation, and administrators from 14 separate agencies in the federal government. The board reports to the Secretary for Health and Human Services (HHS) and is tasked primarily with recommending policies to the relevant government entities on preventing published research in the biological sciences from negatively impacting national security and public health.

The move drew harsh criticism from researchers in the field, many of whom thought that it was too broad. They claimed it would jeopardize their ability to predict, detect, and respond to potentially emerging pandemics. In the private sector, several companies said that the order would prevent them from working on new antiviral drugs and vaccines. Furthermore, many young scientists worried that an inability to do their experiments could jeopardize their careers. In an effort to bring attention to the issue, many scientists (including the two flu researchers whose research triggered the pause) formed the group Scientists for Science, which advocates against blanket bans on research. In addition, researchers were especially upset by the recommendation of the NSABB to censor the publications resulting from the experiments due to fears that this research could have a “dual use” that would threaten national security. However, not all researchers in the field support gain of function research (the opposition group is called Cambridge Working Group) and maintain that the risks of the research outweigh benefits.

The moratorium lasted until January 9th, 2017, when the OSTP released the guidelines for funding this research in the future. The new rules are essentially the same recommendations put forth by the NSABB seven months earlier. The NSABB had concluded that these studies involving “potentially pandemic pathogens” (PPP) do indeed have important benefits to public health, but warranted additional screening prior to funding approval. It directed federal agencies to create a pre-funding review mechanism using eight criteria (including whether the pathogen is likely to cause a naturally occurring pandemic, and if there are alternative methods of answering the scientific question). The results of these reviews must be reported to the White House OSTP. Importantly, the policy was implemented in the final days of the Obama administration rather than leave it to the incoming Trump administration, who, as of this date, has yet to fill nearly any top science positions, and may not have issued guidance for months, if at all.  Researchers welcomed the decision to finally lift the ban, but questioned when the projects would be allowed to resume.

What can we learn from this situation from a science policy perspective? First, we must learn not to overreact to hysteria regarding the risks of this type of research. Indeed, there are risks in performing research on potentially pandemic strains of influenza and other pathogens, as there are with other types of research. But issuing overly broad, sweeping moratoriums halting ground breaking research for years is not the answer, nor is government censorship of academic publication. While in the end, the studies were given the green light to resume, and were published without modification, there is no making up for the lost time. These studies are not machines than can simply be turned on and off on a whim without repercussions. When we delay research into learning how viruses become pandemic, we hurt our ability to detect and respond to naturally occurring outbreaks. Additionally, when American scientists are prevented from doing research that other countries are still pursuing, American leadership in the biomedical sciences is at a competitive disadvantage. (The European Academies Science Advisory Council also recently updated its recommendations for PPP research in 2015, but did not institute a moratorium.) What we learn from these studies could potentially save countless lives. Secondly, the freedom to publish without any government censorship must be valiantly defended in any and all fields, especially with a new administration with an aggressively anti-science and anti-climate stance. Lastly, the scientific community must do a better job educating the public both on the importance of these studies from a public health perspective, and on the precautions put into place to ensure that these studies are conducted safely.

In the future, there will inevitably be debates over the safety or ethics of the latest experiments in a particular field. In attempting to wade through the murky waters of a complex controversy, science policy makers should make decisions that balance public health, safety, and ethics, rather than reactionary policies like censorships and moratoriums.

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

April 21, 2017 at 8:47 am

Science Policy Around the Web – April 14, 2017

leave a comment »

By: Leopold Kong, PhD

Fatty foods: By Lucasmartin2 (Own work) [CC BY-SA 4.0], via Wikimedia Commons

Health Policy

Banning Trans Fats in New York Prevented Thousands of Heart Attacks

In an effort to lower the incidence of heart disease, the leading cause of death in the United States, the FDA will prohibit food manufacturers from using trans fats next summer. FDA’s decision was based on decades of research linking trans fat consumption with increased risk of heart disease. A study published this Wednesday in JAMA Cardiology provided further support for the ban. Using data from the New York State Department of Public Health, collected from 11 counties where trans fats restriction was recently implemented, the researchers showed a statistically significant decline in heart attack (7.8%) and stroke (3.6%) events since then. “The most important message from these data is that they confirm what we predicted — benefit in the reduction of heart attacks and strokes,” said the lead author, Dr. Eric J. Brandt, a fellow in cardiovascular medicine at Yale. “This is a well-planned and well-executed public policy.” With the rising cost of health care in the United States, the FDA’s long awaited trans fat ban is urgently needed to lighten the public health burden. (Leah Samuel, STATNews)

Vaccine Research

The Human Vaccines Project, Vanderbilt and Illumina Join Forces to Decode the Human Immunome

Rapidly evolving viruses such as HIV and Hepatitis C have been difficult targets for traditional vaccine development, in which inactivated viruses or viral proteins are used as vaccine components. Despite the success of small molecule therapeutics against HIV and Hepatitis C, an effective vaccine remains the most cost effective solution to curb the global pandemics caused by these viruses. Scientists now seek to optimize vaccine candidates based on a deeper understanding of host-pathogen interactions using multidisciplinary approaches, ranging from protein engineering and evolutionary biology to immunology and genetics. To facilitate these sophisticated efforts, the Human Vaccines Project, an international public-private collaboration, was established. A major initiative of the project, the Human Immunome Program, is led by Vanderbilt University Medical Center. Now, Illumina has joined the collaboration to help decipher the genetic features of the immune system, or the “immunome,” using cutting edge sequencing technology. DNA sequences from immune cells during infection may capture how the immune system adapts to viruses, providing guidelines for vaccine design. “Successfully defining the human immunome will provide the foundational knowledge to usher in a new era of vaccine, diagnostic, and therapeutic development,” says Gary Schroth, vice president for product development at Illumina. Greater understanding of the immunome may also lead to more effective cancer vaccines. (Human Vaccines Project)

 

Have an interesting science policy link?  Share it in the comments!

Science Policy Around the Web – April 11, 2017

leave a comment »

By: Liz Spehalski, PhD

Source: pixabay

Antibiotic Resistance

KFC to Stop Using Antibiotics in Chicken

Kentucky Fried Chicken (KFC) has announced that by 2018, all of its “finger-lickin’ good” chicken will be raised without antibiotics, a decision that is being applauded by health experts. KFC, which has the second largest sales of a U.S. chicken chain after Chick-fil-A is giving its poultry suppliers the deadline to stop using antibiotics in their protein. It will join other large chicken serving fast food chains in fighting the rise of antibiotic resistant bacteria, following in the footsteps of McDonald’s, Chick-fil-A, and Subway. Corporate factory farms in the U.S. often treat their livestock and poultry with antibiotics to prevent disease and promote growth. Currently, livestock ventures utilize about 70% of the nation’s supply of the antibiotics that are given to patients when infections strike.

Antibiotics and other antimicrobial agents have been used successfully since the 1940s to treat people with infectious diseases, greatly reducing illness and death caused by microorganisms. However, the incidence of antibiotic- resistant bacteria is rising swiftly. According to the CDC, 2 million people become infected with antibiotic resistant bacteria each year, and at least 23,000 die because of these infections. Although resistance is caused simply by the wide usage of antibiotics across the globe, the fact remains that antibiotics are often incorrectly or over-prescribed.

This is a victory for consumer health groups who lobbied KFC to change its policies. “This announcement is a win for anybody who might someday depend on antibiotics to get well or even save their lives — i.e. everybody,” said Matthew Wellington, Program Director for one group’s antibiotics program. “It’s also a welcome step by KFC. The company’s newfound commitment on antibiotics should have lasting effects on the way these life-saving medicines are used in the chicken industry.” These advocates are currently lobbying state legislatures to pass laws that ban the routine use of antibiotics in livestock. (Lisa Baertlein, Business Insider)

Evolutionary Biology

Discovery of Giant Virus Fuels Debate over Fourth Domain of Life

Since their identification in the late 1800s as filterable infectious agents, viruses have long been characterized by their incredibly small size and their reliance on host cells for translation. These features have disqualified viruses as being classified as living organisms. However, with the discovery of the giant Mimivirus in 2003, evolutionary biologists are divided. Mimiviruses are larger than many microorganisms and can contain more than 2500 genes, including genes that implied their ancestors could live outside of a host cell. This discovery prompted some scientists to propose that viruses are descendants of a fourth domain of life alongside bacteria, eukaryotes, and archaea, while other researchers see no need for the fourth domain, asserting that viruses simply steal their genome from hosts.

A study published in Science on April 6 fuels this debate with the discovery of a virus in an Austrian sewage treatment plant that contains a genome with the most cell-like phenotype yet discovered. Klosneuvirus genomes contain genes for 20 amino acids as well as enzymes and other machinery used for protein synthesis. Analysis of these genomes suggests that the translation machinery seemed to have been picked up by one virus from a eukaryotic host cell, supporting the theory that viruses stole their genetic material and are thus not qualified as “life.” However, scientists have not been able to identify the host from which the stolen genes were taken, leaving the debate open since much of the Klosneuviruses’ translation genes do not match that of any other known organism. Further evolutionary work will need to be done to determine if viruses are indeed a fourth domain of life. (Sara Reardon, Nature News)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

April 11, 2017 at 9:24 am