Science Policy For All

Because science policy affects everyone.

Posts Tagged ‘Zika

Genetically Modified Animal Vectors to Combat Disease

leave a comment »

By: Sarah L Hawes, PhD

Mosquito larvae: ©ProjectManhattan via Wikimedia Commons

Diseases transmitted through contact with an animal carrier, or “vector,” cause over one million deaths annually, many of these in children under the age of five. More numerous, non-fatal cases incur a variety of symptoms ranging from fevers to lesions to lasting organ damage. Vector-borne disease is most commonly contracted from the bite of an infected arthropod, such as a tick or mosquito. Mosquito-borne Zika made recent, regular headlines following a 2015-2016 surge in birth defects among infants born to women bitten during pregnancy. Other big names in vector-borne disease include Malaria, Dengue, Chagas disease, Leishmaniasis, Rocky Mountain spotted fever and Lyme.

Vaccines do not exist for many of these diseases, and the Centers for Disease Control (CDC) Division of Vector-Borne Diseases focuses on “prevention and control strategies that can reach the targeted disease or vector at multiple levels while being mindful of cost-effective delivery that is acceptable to the public, and cognizant of the world’s ecology.” Prevention through reducing human contact with vectors is classically achieved through a combination of physical barriers (i.e. bed nets and clothing), controlling vector habitat near humans (i.e. dumping standing water or mowing tall grass), and reducing vector populations with poisons. For instance, the Presidential Malaria Initiative (PMI), initiated under President Bush in 2005, and expanded under President Obama, reduces vector contact through a complement of educating the public, distributing and encouraging the use of bed nets, and spraying insecticide. Now a 600 million dollar a year program, PMI has been instrumental in preventing several million Malaria-related deaths in the last decade.

But what if a potentially safer, cheaper and more effective solution to reduce human-vector contact exists in the release of Genetically Modified (GM) vector species? Imagine a mosquito engineered to include a new or altered gene to confer disease resistance, sterility, or to otherwise impede disease transmission to humans. Release of GM mosquitos could drastically reduce the need for pesticides, which may be harmful to humans, toxic to off-target species, and have led to pesticide-resistance in heavily-sprayed areas. Health and efficacy aside, it is impossible to overturn or poison every leaf cupping rainwater where mosquitos breed. GM mosquitos could reach and “treat” the same pockets of water as their non-GM counterparts. However, an insect designed to pass on disease resistance to future generations would mean persistence of genetic modifications in the wild, which is worrisome given the possibility of unintended direct effects or further mutation. An elegant alternative is the release of GM vector animals producing non-viable offspring – and this is exactly what biotech company Oxitec has done with mosquitos.

Oxitec’s OX513A mosquitos express a gene that interferes with critical cellular functions in the mosquitos, but this gene is suppressed in captivity by administering the antibiotic tetracycline in the mosquitos’ diet. Release of thousands of non-biting OX513A males into the wild results in a local generation of larvae which, in the absence of tetracycline, die before reaching adulthood. Release of OX513A has proven successful at controlling mosquito populations in several countries since 2009, rapidly reducing local numbers by roughly 90%. Oxitec’s OX513A line may indeed be a safe and effective tool. But who is charged with making this call for OX513A and, moreover for future variations in GM vector release?

Policy governing use of genetically modified organisms must keep pace with globally available biotechnology. Regulatory procedures for the use of GM vector release are determined by country, and there is a high degree of international policy alignment. The Cartagena Protocol on Biosafety is a treaty involving 170 nations currently (the US not included) that governs transport of “living modified organisms resulting from modern biotechnology” with potential to impact environmental or human health. The World Health Organization (WHO) and the Foundation for the National Institutes of Health (FNIH) published the 2014 guidelines for evaluating safety and efficacy of GM mosquitos.

Within the US, the 2017 Update to the Coordinated Framework for the Regulation of Biotechnology was published this January in response to a solicitation by the Executive Office of the President for a cohesive report from the Food and Drug Administration (FDA), Environmental Protection Agency (EPA), and US Department of Agriculture (USDA). Separately, biotech industry has been given fresh guidance on whether to seek FDA or EPA approval (in brief):  if your GM product is designed to reduce disease load or spread, including vector population reduction, it requires New Animal Drug approval by FDA; if it is designed to reduce pest population but is un-related to disease, it requires Pesticide Product approval by EPA under the Federal Insecticide, Fungicide, and Rodenticide Act.

Thus, for a biotech company to release GM mosquitos in the US with the intent of curbing the spread of mosquito-borne disease, they must first gain FDA approval. Oxitec gained federal approval to release OX513A in a Florida suburb in August 2015 because of FDA’s “final environmental assessment (EA) and finding of no significant impact (FONSI).” These FDA assessments determined that the Florida ecosystem would not be harmed by eliminating the targeted, invasive Aedes aegypti mosquito. In addition, they affirmed that no method exists for the modified gene carried by OX513A to impact humans or other species. Risks were determined to be negligible, and include the accidental release of a few, disease-free OX513A females. For a human bitten by a rare GM female, there is zero risk of transgene transfer. There is no difference in saliva allergens, and therefore the response to a bite, from GM and non-GM mosquitos. In addition, as many as 3% of OX513A offspring manage to survive to adulthood, presumably by spawning in tetracycline-treated water for livestock. These few surviving offspring will not become a long-term problem because their survival is not a heritable loop-hole; it is instead analogous to a lucky few mosquitos avoiding contact with poison.

Solid scientific understanding of the nature of genetic modifications is key to the creation of good policy surrounding the creation and use of GMOs. In an updated draft of Guidelines For Industry 187 (GFI 187), the FDA advises industry seeking New Animal Drug Approval to include a molecular description of the intentional genetic alteration in animals, method for alteration, description of introduction to the animal, and whether the alteration is stable over time/across generations if heritable, and environmental and food safety assessments. Newer genomic DNA editing techniques such as CRISPR offer improved control over the location, and thus, the effect of genetic revisions. In light of this, the FDA is soliciting feedback from the public on the GFI 187 draft until April 19th, 2017, in part to determine whether certain types of genetic alteration in animals might represent no risk to humans or animals, and thus merit reduced federal regulation.

Following federal clearance, the decision on whether to release GM vectors rests with local government. Currently, lack of agreement among Florida voters has delayed the release of OX315A mosquitos. Similar to when GM mosquito release was first proposed in Florida following a 2009-2010 Dengue outbreak, voter concern today hinges on the perception that GM technology is “unproven and unnatural.” This illustrates both a healthy sense of skepticism in our voters, and the critical need to improve scientific education and outreach in stride with biotechnology and policy. Until we achieve better public understanding of GM organisms, including how they are created, controlled, and vetted, we may miss out on real opportunities to safely and rapidly advance public health.

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

February 16, 2017 at 9:46 am

Containing Emerging and Re-emerging Infections Through Vaccination Strategies

leave a comment »

By: Arielle Glatman Zaretsky, PhD

Source: CDC [Public Domain], via Wikimedia Commons

           Throughout history, humans have sought to understand the human body and remedy ailments. Since the realization that disease can be caused by infection and the establishment of Koch’s postulates, designed to demonstrate that a specific microbe causes a disease, humans have sought to identify and “cure” diseases. However, while we have been successful as a species at developing treatments for numerous microbes, viruses, and even parasites, pure cures that prevent future reinfection have remained elusive. Indeed, the only human disease that has been eradicated in the modern era (smallpox) was eliminated through the successful development and application of preventative vaccines, not the implementation of any treatment strategy. Furthermore, the two next most likely candidates for eradication, dracunculiasis (guinea worm disease) and poliomyelitis (polio), are approaching this status through the use of preventative measures, via water filtration and vaccination, respectively. In fact, despite the recent pushback from a scientifically unfounded anti-vaxxers movement, the use of a standardized vaccination regimen has led to clear reductions in disease incidence of numerous childhood ailments in the Americas, including measles, mumps, rubella, and many others. Thus, although the development of antibiotics and other medical interventions have dramatically improved human health, vaccines remain the gold standard of preventative treatment for the potential of disease elimination. By Centers for Disease Control and Prevention [Public domain], via Wikimedia Commons

Recently, there have been numerous outbreaks of emerging or reemerging infectious diseases. From SARS to Ebola to Zika virus, these epidemics have led to significant morbidity and mortality, and have incited global panic. In the modern era of air travel and a global economy, disease can spread quickly across continents, making containment difficult. Additionally, the low incidence of these diseases means that few efforts are exerted to the development of treatments and interventions for them, and when these are attempted, the low incidence further complicates the implementation of clinical trials. For example, though Ebola has been a public health concern since the first outbreak in 1976, no successful Ebola treatment or vaccine existed until the most recent outbreak of 2014-2016. This outbreak resulted in the deaths of more than 11,000 people, spread across more than 4 countries, and motivated the development of several treatments and 2 vaccine candidates, which have now reached human trials. However, these treatments currently remain unlicensed and are still undergoing testing, and were not available at the start or even the height of the outbreak when they were most needed. Instead, diseases that occur primarily in low income populations in developing countries are understudied, for lack of financial incentive. Thus, these pathogens can persist at low levels in populations, particularly in developing countries, creating a high likelihood of eventual outbreak and potential for future epidemics.

This stream of newly emerging diseases and the re-emergence of previously untreatable diseases brings the question of how to address these outbreaks and prevent global pandemics to the forefront for public health policy makers and agencies tasked with controlling infectious disease spread. Indeed, many regulatory bodies have integrated accelerated approval policies that can be implemented in an outbreak to hasten the bench to bedside process. Although the tools to identify new pathogens rapidly during an outbreak have advanced tremendously, the pathway from identification to treatment or prevention remains complicated. Regulatory and bureaucratic delays compound the slow and complicated research processes, and the ability to conduct clinical trials can be hindered by rare exposures to these pathogens. Thus, the World Health Organization (WHO) has compiled a blueprint for the prevention of future epidemics, meant to inspire partnerships in the development of tools, techniques, medications and approaches to reduce the frequency and severity of these disease outbreaks. Through the documentation and public declaration of disease priorities and approaches to promote research and development in these disease areas, WHO has set up a new phase of epidemic prevention through proactive research and strategy.

Recently, this inspired the establishment of the Coalition for Epidemic Preparedness Innovations (CEPI) by a mixed group of public and private funding organizations, including the Bill and Melinda Gates Foundation, inspired by the suggestion that an Ebola vaccine could have prevented the recent outbreak if not for the lack of funding slowing research and development, to begin to create a pipeline for developing solutions to control and contain outbreaks, thereby preventing epidemics. Instead of focusing on developing treatments to ongoing outbreaks, the mission at CEPI is to identify likely candidates for future outbreaks based on known epidemic threats and to lower the barriers for effective vaccine development through assisting with initial dose and safety trials, and providing support through both the research and clinical trials, and the regulatory and industry aspects. If successful, this approach could lead to a stockpile of ready-made vaccines, which could easily be deployed to sites of an outbreak and administered to aid workers to reduce their morality and improve containment. What makes this coalition both unique and exciting is the commitment to orphan vaccines, so called for their lack of financial appeal to the pharmaceutical industry that normally determines the research and development priorities, and the prioritization of vaccine development over treatment or other prophylactic approaches. The advantage of a vaccination strategy is that it prevents disease through one simple treatment, with numerous precedents for adaptation of the vaccine to a form that is permissive of the potential temperature fluctuations and shipping difficulties likely to arise in developing regions. Furthermore, it aids in containment, by preventing infection, and can be quickly administered to large at risk populations.

Thus, while the recent outbreaks have incited fear, there is reason for hope. Indeed, the realization of these vaccination approaches and improved fast tracking of planning and regulatory processes could have long reaching advantages for endemic countries, as well as global health and epidemic prevention.

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

January 26, 2017 at 9:47 am

Science Policy Around the Web – November 22, 2016

leave a comment »

By: Rachel Smallwood, PhD

Photo source: pixabay

Federal Research Funding

US R&D Spending at All-Time High, Federal Share Reaches Record Low

Recently released data from the National Science Foundation (NSF) showed trending increases in scientific research funding in the US across the past several years. Estimates of the total funding for 2015 put the value at an all-time high for research and development (R&D) funding for any country in a single year. In 2009, President Obama stated a goal to devote 3% of the USA’s gross domestic product (GDP) to research, and we have been making slow progress to that point; in 2015, 2.78% of the GDP went to research. Businesses accounted for the largest portion of overall scientific funding, contributing 69% of the funds. The second largest contributor was the federal government; however, it had the lowest percentage share of the total since the NSF started tracking funding in 1953, and the actual dollar amount contributed has been declining since 2011. Therefore, although the overall percentage of GDP going to research is increasing, that increase is driven by businesses, whereas the GDP percentage contributed by the federal government has dropped to almost 0.6%.

When taking a closer look at types of research, the federal government is the largest funding source for basic science research, covering 45% of the total. However, businesses make up the majority of the funding for applied research (52% in 2014) and experimental development (82% in 2014). This disproportionality in funding types combined with the decreases in federal research spending are concerning for the basic science field. There is more competition for less money, and this concern is compounded by uncertainty and questions about President-Elect Trump’s position on and plans for scientific funding. Aside from a couple of issues, primarily concerning climate change and the environment, he has said very little about science and research. Many scientists, institutions, and concerned citizens will be watching closely to see how science policy develops under Trump’s administration and its effects on federal spending and beyond. (Mike Henry, American Institute of Physics)

Biomedical Research

‘Minibrains’ Could Help Drug Discovery for Zika and for Alzheimer’s

A group of researchers at Johns Hopkins University (JHU) is working on a promising tool for evaluating disease and drug effects in humans without actually using humans for the tests. ‘Minibrains’ are clusters of human cells that originated as skin cells, reprogrammed to an earlier stage of development, and then forced to differentiate into human neural cells. They mimic the human brain as far as cell types and connections, but will never be anywhere near as large as a human brain and can never learn or become conscious.

A presentation earlier this year at the American Association for the Advancement of Science conference showcased the potential utility for minibrains. A large majority of drugs that are tested in animals fail when introduced in humans. Minibrains provide a way to test these drugs in human tissue at a much earlier stage – saving time, money, and animal testing – without risking harm to humans. Minibrains to test for biocompatibility can be made from skin cells of healthy humans, but skin cells from people with diseases or genetic traits can also be used to study disease effects.

A presentation at the Society for Neuroscience conference this month demonstrated one such disease – Zika. The minibrains’ growth is similar to fetal brain growth during early pregnancy. Using the minibrains, Dr. Hongjun Song’s team at JHU was able to see how the Zika virus affected the cells; the affected minibrains were much smaller than normal, a result that appears analogous to the microcephaly observed in infants whose mothers were infected with Zika during the first trimester.

Other presentations at the meeting showcased work from several research groups that are already using minibrains to study diseases and disorders including brain cancer, Down syndrome, and Rett syndrome, and plans are underway to utilize it in autism, schizophrenia, and Alzheimer’s disease. Though there might be a bit of an acceptance curve with the general public, minibrains potentially offer an avenue of testing that is a better representation of actual human cell behavior and response, is safer and more affordable, and reduces the need for animal testing. (Jon Hamilton, NPR)

Health Policy

A Twist on ‘Involuntary Commitment’: Some Heroin Users Request It

The opioid addiction epidemic has become a significant healthcare crisis in the United States. Just last week the US Surgeon General announced plans to target addiction and substance abuse. He also stated the desire for a change in perception of addiction – it is a medical condition rather than a moral or character flaw. Earlier this year, the Centers for Disease Control published guidelines that address opioid prescribing practices for chronic pain, strongly urging physicians to exhaust non-pharmacologic options before utilizing opioids. In response to the rising concern over prescription opioid abuse, steps have been taken to reduce prescriptions and access. This has resulted in many turning to heroin – which is usually a cheaper alternative anyway – to get their opioid fix.

One of the first steps in treatment and recovery for addiction and dependence is detoxing. However, opioids are highly addictive and many people struggle with the temptation to relapse. Additionally, many of the programs designed to help with the initial detox have long wait lists, are expensive, and may not be covered by insurance, further deterring those with addiction and dependence from getting the help they need. These factors have caused many to start turning to their states, asking to be voluntarily committed to a program on the basis that they are a danger to themselves or others because of their substance abuse. This is currently an option in 38 states. These programs can be held in either privately-run institutions or in state prisons. However, this practice is controversial because if the person’s insurance does not cover their stay, it falls to tax payers to foot the bill. While this is unpopular with some, advocates say the civil commitment laws are important options while there may be no other immediate ways for an individual to get help. (Karen Brown, NPR)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

November 22, 2016 at 9:00 am

Science Policy Around the Web – November 15, 2016

leave a comment »

By: Sarah Hawes, PhD

Source: PHIL

Zika

Florida voters weigh in on GM mosquito releases: What are the issues?

Concern over mosquito-borne Zika virus arriving in the United States this year spurred rapid allocation of resources toward identifying solutions. Clinical trials are just beginning for a traditional, attenuated vaccine while parallel efforts include research into injecting small DNA segments to effectively vaccinate by engaging a patient’s own cells to produce harmless, Zika-like proteins. However the risk of severe birth defects in infants born to Zika infected mothers is a powerful incentive for expediency. One answer exists in the use of genetically modified (GM) mosquitos to reduce vector number by breeding them in the wild. In August, the Food and Drug Administration (FDA) agreed for the first time to release of GM mosquitoes in the U.S.

The GM mosquitos in question are almost exclusively non-biting males of the Zika vector species Aedes aegypti, modified by British biotech company Oxitec, to carry a gene that prevents their offspring from reaching sexual maturity. Oxitec has used similar techniques successfully since 2009 in the Cayman Islands, Malaysia, Brazil, and Panama. A document prepared by the FDA Center for Veterinary Medicine examines myriad concerns, and determines program risks to be negligible. It includes ecosystem reports showing lack of predators reliant on the invasive Aedes aegypti, and explains that no recognized method exists for the genome-integrated transgene to impact or spread among other species. However a small percentage of GM mosquitos survive to adulthood and could transfer modified genes (or transgene resistance) to next-generation Aedes aegypti. In addition, some fear that population reduction among one disease-carrying mosquito species will make way for another, such as Aedes albopictus, which is also capable of carrying Zika, Dengue, and Chikungunya.

On Election Day, the final word on whether or not to release Oxitec GM mosquitos was given to voters living in the proposed release-site in the small peninsula neighborhood of Key Haven, Florida, and in surrounding Monroe County. Countywide, 58 percent of voters favored release. Within Key Haven, 65 percent opposed it. Following this divide, the decision now rests with Florida Keys Mosquito Control Board. (Kelly Servick, Science Insider)

HIV Vaccine

Controversial HIV vaccine strategy gets a second chance

The first participants in a $130 million HIV vaccine study, funded primarily by the National Institute of Allergy and Infectious Diseases (NIAID) and the Bill & Melinda Gates Foundation, received injections last week in South Africa. The study is a modified repetition of a study conducted in Thailand seven years ago that used nearly three times the number of participants and reported a modest 31.2% risk reduction through vaccination. In a nation with 6 million HIV positive persons, this would still be valuable if reproduced, but there is concern that alterations in the vaccine intended to boost efficacy could have the opposite effect.

No mechanism has been found for the vaccine’s efficacy in Thailand, making it hard to improve on. In hopes of extending the duration of protection, twice the amount of an HIV surface protein will be given. A canary-pox virus carrying pieces of HIV virus common in Thailand seven years ago (targets on which to hone the body’s immunity) has instead been loaded with strains common in South Africa. Finally, a stronger immune stimulant, or “adjuvant,” is included in the injection. However, in May, a study by National Cancer Institute vaccine researcher Genoveffa Franchini found that monkeys were protected from HIV by the old but not by the new adjuvant. Franchini suggests that the new adjuvant may even leave vaccinated persons more susceptible to infection. The South Africa study leader Glenda Gray says that Franchini makes a “compelling” argument for adding a group to repeat use of the old adjuvant, if more money can be found.

The enormity of South Africa’s AIDS epidemic (18% of global cases) compels empathy for the perspective held by Gray, who said, “Someone has to put their stake in the ground and have the courage to move forward, knowing we might fail.” At the same time one would hope that the use of $130 million in HIV research funds is being fueled more by quality medical science than by desperation and action-bias. (Jon Cohen, Science Magazine)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

November 15, 2016 at 9:45 am

Science Policy Around the Web – October 7, 2016

leave a comment »

By: Eric Cheng, PhD

Source: pixabay

Antibiotic Resistance

World health leaders agree on action to combat antimicrobial resistance, warning of nearly 10 million deaths annually if left unchecked

World leaders committed to take action on antimicrobial resistance during their September 21, 2016 high-level meeting on Antimicrobial Resistance in New York. This is the first time Heads of State made a commitment to address the root cause of antimicrobial resistance in human health, animal health, and agriculture. Dr. Margaret Chan, Director-General of the World Health Organization emphasized that “antimicrobial resistance poses a fundamental threat to human health, development, and security. The commitments made today must now be translated into swift, effective, lifesaving actions across the human, animal and environmental health sectors. We are running out of time.”

The committed countries pledged to strengthen regulation of antimicrobials, improve knowledge and awareness, and promote best practices. World leaders also agreed to foster innovative approaches using alternatives to antimicrobials and new technologies for diagnosis and vaccines. The committed countries will base their national action plans on the Global Action Plan on Microbial Resistance, a blueprint developed in 2015 by the World Health Organization along with Food and Agriculture Organization of the United Nations and the World Organization for Animal Health. (United Nations Meetings Coverage and Press Releases)

Zika

Documents reveal intense battle over CDC Zika tests

In addition to battling the spread of Zika infections, the Center for Disease and Prevention (CDC) is currently in an internal battle with determining which test will be best in diagnosing someone with the disease. Robert Lanciotti is the Chief of the Diagnostics and Reference Activity in the Division of Vector-Borne Infectious Diseases in Fort Collins, CO. At the center of the debate is the agency’s prioritization of the Trioplex real-time PCR-based assay that tests for Zika, dengue, and chikungunya over the Singleplex assay which only detects Zika, which Lanciotti’s research found to be 39% more effective than the Trioplex assay.

Lanciotti claimed that the CDC “created a substantial and specific danger to public health” when it did not disclose lower sensitivity of the test it used. Lanciotti was subsequently reassigned to a non-supervisory position in his laboratory who then filed a whistleblower retaliation claim with the US Office of Special Counsel. Lanciotti alleged that the demotion was because of his concerns with the Zika test. Lanciotti has since been reinstated as director of his lab. In addition, the Office of Special Counsel requested that the CDC investigate Lanciotti’s concerns with the sensitivity of the Trioplex test.

The CDC’s own investigation found that Dr. Lanciotti’s allegations “are not substantiated by the available evidence.” The CDC ruled that “[t]here is insufficient, statistically robust, definitive data to reach an evidence-based conclusion that use of the Trioplex assay over the Singleplex in clinical practice will result in 39 percent of Zika virus infections being missed.” The CDC also noted that it is continuing to improve on the Trioplex assay such as enabling testing laboratories to use larger sample volumes in order to increase the assay’s limit of detection. The Trioplex assay is still approved for use as a method of detecting Zika virus, dengue, and chikungunya. (Jon Cohen, Science Magazine)

Research Funding

HHMI Launches New Program for Early-Career Scientists

The Howard Hughes Medical Institute (HHMI) recently launched a new program to recruit and retain early-career scientists that are underrepresented in the life sciences. These individuals include those coming from a disadvantaged background. The selected HHMI scientists will become Hanna H. Gray fellows, named after Hanna H. Gray, former chair of the HHMI Trustees and former president of the University of Chicago.

The purpose of the Gray Fellows Program is to find and encourage talented students and early scientists that are committed to continuing their scientific training in the nation’s top laboratories. The Hanna H. Gray Fellows grant competition is open to all eligible applicants and no nomination is required.  Selected fellows are required to devote at least 75 percent of their total effort to research during both the postdoctoral training and faculty phases of the award. In addition, part of the goal for the program is to position Gray fellows to be competitive for NIH grants and other awards when they transition to the faculty phase of their careers. (Howard Hughes Medical Institute)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

October 7, 2016 at 11:12 am

Science Policy Around the Web – September 6, 2016

leave a comment »

By: Amy Kullas, PhD

Vaccines

Parents remain apprehensive of vaccine safety and efficacy

In a recent survey published by the American Academy of Pediatrics, an alarming percentage of parents are refusing or delaying important vaccines. This percentage continues to increase because “parents believe they are unnecessary”. This phenomenon has directly resulted in outbreaks of measles and mumps in the United States, and polio in Syria.

The misguided “anti-vaccination movement” began with a paper published by Andrew Wakefield in The Lancet in 1998. The authors alleged that eight children (out of a very small sample size of 12) developed autism shortly after receiving the measles, mumps and rubella (MMR) vaccine. The impact of this now-retracted paper still ripples through the scientific community and beyond, to within the general public in the United States.

Numerous celebrities (Jim Carrey, Robert De Niro, Jenny McCarthy-just to name a few) and the Republican party nominee, Donald Trump, continue to fuel the anti-vaccine fire spreading through the United States. Trump has gone as far to say: “Autism has become an epidemic. Twenty-five years ago, 35 years ago, you look at the statistics, not even close. It has gotten totally out of control.” Further, he said, “Just the other day, two years old, 2½ years old, a child, a beautiful child went to have the vaccine, and came back, and a week later got a tremendous fever, got very, very sick, now is autistic.” The ultimate result has been a “dangerous drop in MMR vaccinations” according to public health officials. Given Trump’s stance on vaccination and how the candidate has made vaccine policy into a political topic could have grave consequences on American youth for years to come.

Interestingly, there has been a change in reasoning as to why parents refuse vaccines for their children. In 2006, the number one reason cited was parental belief that vaccines caused autism. In 2013, this was no longer the popular belief; instead parents are stating vaccines are “unnecessary” and are failing to vaccinate their children. The “parental noncompliance” with the CDC’s recommended vaccination strategy continues to be “an increasing public health concern.” (Ariana Eunjung Cha, The Washington Post)

Zika and Insecticides

Millions of honeybees killed after insecticide spraying to combat Zika-carrying mosquitos

In an effort to annihilate Zika-carrying mosquitos in South Carolina, officials in Dorchester County approved an aerial spraying of Naled-a common insecticide. This decision ultimately led to millions of honeybees getting killed. The majority of the victims were from Flowertown Bee Farm and Supply. Co-owner, Juanita Stanley stated, “the farm looks like it’s been nuked.” The farm lost close to 50 hives which housed ~2.5 million bees.

Naled was approved for “mosquito control” in 1959. The Environmental Protection Agency (EPA) notes that Naled “is not a risk for humans” and they “aren’t likely to breath or touch anything that has enough insecticide on it to harm them.” Unfortunately, Naled does not discriminate bees from mosquitos and efficiently kills them both. The EPA does recommend spraying the chemical between dusk and dawn, when bees are not typically foraging.

The county insists they gave residents plenty of notice prior to the spraying through a newspaper announcement and a Facebook posting. However, some residents suggest otherwise, stating “Had I known, I would have been camping on the steps doing whatever I had to do screaming, ‘No you can’t do this.’” The Dorchester county officials have issued a statement stating that they are “not pleased that so many bees were killed” and they have not offered to compensate the beekeepers for their losses. (Ben Guarino, The Washington Post)

Health

Bye-bye to antibacterial soaps

On the Friday before the holiday weekend, the U.S. Food and Drug Administration (FDA) released its final ruling that will ban specific ingredients, such as triclosan and triclocarban, commonly used in antibacterial and antimicrobial soaps. Soap manufacturers will have an additional year to negotiate over less common ingredients, like benzalkonium chloride. Altogether, the FDA has taken a stance against 19 chemicals, which are used in almost half of soap products. Reasons behind the ban include: “are not generally recognized as safe and effective…and are misbranded.” To date, the manufacturers have not shown that these ingredients are safe for daily use as well as failed to demonstrate an increase in efficacy when compared with plain soap. Hand sanitizers and antiseptic products used in healthcare or the food industry are not affected by this ban.

In 2013, the FDA first issued a warning to the industry that unless it could provide substantial proof that compounds like triclosan and triclocarban were more beneficial than harmful, the chemicals would need to be removed. Triclosan is in more than 90% of the liquid soaps labeled as ‘antibacterial’ or ‘antimicrobial’. Triclosan disrupts the bacterial cell wall, breaking it open and ultimately killing the bacterium. However, this mechanism of killing occurs over a couple hours, much longer than it takes a person to wash his or her hands. Additionally, researchers found that triclosan can disturb hormone balance to interrupt the normal development of the reproductive system and metabolism in animals. Scientists warned that there could be similar effects in humans. Some of the large companies have been proactive and started removing the chemicals from their products. (Sabrina Tavernise, New York Times)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

September 6, 2016 at 9:15 am

Science Policy Around the Web – August 23, 2016

leave a comment »

By: Agila Somasundaram, PhD

Aedes aegypti, by James Gathany (PHIL, CDC) [Public domain], via Wikimedia Commons

Zika

How big, really, is the Zika outbreak in Florida?

On Friday, officials announced that the Zika virus had spread to a second area in Florida, the Miami Beach, a popular tourist destination. The Centers for Disease Control and Prevention (CDC) has advised pregnant women to avoid those areas, and in fact, advised pregnant couples concerned about exposure to Zika to “consider postponing nonessential travel to all parts of Miami-Dade county”. Officials note that it will be difficult to limit the spread of the virus in this area because aerial spraying may not work very well around high-rise buildings, and convincing beach-goers to wear long sleeves and pants might be hard. With schools starting today, school officials have distributed mosquito repellant cans to parents, and long-sleeved shirts and pants to students. 37 cases of Zika infection have been reported in the two areas in Miami.

Many scientists are concerned that the outbreak may be larger and more widespread than these numbers. Alessandro Vespignani, a computer scientist at Northeastern University in Boston, who is modeling the spread of Zika, says, “Zika is one of those diseases that is always like an iceberg — you just see the tip.” 4 in 5 people who get the virus don’t have any symptoms, and people who get sick exhibit mild symptoms that could easily be confused with the flu. So only 5 percent of cases get detected, says Vespignani. Models predict that 395 people will be infected with the virus by September 15, in Florida. Only about 80 of them will show symptoms, and about 8 pregnant women are likely to get infected during their first trimester, putting their fetuses at risk for microcephaly, says Ira Longini, a biostatistician at the University of Florid and a collaborator of Vespignani. Zika will likely continue to spread until October or November when the weather becomes cooler. The computer models also predict that Texas might be next. Dr. Anthony Fauci, director of the National Institute of Allergy and Infectious Diseases, says, “I would not be surprised if we see cases in Texas and Louisiana”, given the recent flooding in Louisiana. Zika virus-carrying mosquitoes breed in stagnant puddles, and there will be a lot of problem getting rid of standing water in flooded areas, says Fauci. (Michaeleen Doucleff, NPR)

Global Health

Debate continues over U.N. role in bringing cholera to Haiti

The 2010 Haiti earthquake claimed over 200,000 lives and injured many more. The cholera outbreak that followed months later resulted in at least 7,000 deaths. Cholera is caused by the bacteria Vibrio cholerae, and is transmitted when faeces from an infected person contaminates drinking water. Many investigations have connected the cholera epidemic in Haiti to sewage leaked from a U.N. base that housed Nepalese peacekeepers. Toilets have been reported to overflow from the base into the nearby stream. In fact, the strain of bacteria in the Haiti epidemic was similar to a strain in Nepal. Even though, for year, the Haitians have been accusing the U.N. for the outbreak, the U.N. has never accepted responsibility. This has led to serious distrust among the Haitians about the U.N. troops. In 2013, a class action suit was brought against the U.N. on behalf of Haitians who were affected by the outbreak. But the U.N. is immune to such legal actions under international law.

Recently, Farhan Haq, spokesperson for U.N. General Secretary Ban Ki-moon, said the U.N. “needs to do much more regarding its own involvement in the initial outbreak.” “What we are doing is trying to see how this can be resolved. How to resolve this? How to do the right thing?” Dr. Louise Ivers, senior health and policy adviser with Partners in Heath (that has treated thousands of cholera patients), said that the U.N. should have acknowledged its role a long time ago. Brian Concannon, the lawyer who brought the class action suit against the U.N., welcomes U.N.’s new statements but is not completely happy. He says the U.N. “clearly did not definitively take responsibility for introducing cholera.” (Jason Beaubien, NPR)

Have an interesting science policy link?  Share it in the comments!

Written by sciencepolicyforall

August 23, 2016 at 8:07 am